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DEPARTMENT VISION

To excel in technical education and research in the field of Electrical & Electronics Engineering
by imparting innovative engineering theories, concepts and practices to improve the production

and utilization of power and energy for the betterment of the Nation
DEPARTMENT MISSION
1) To offer quality education in Electrical and Electronics Engineering and prepare the students

for professional career and higher studies.

2) To create research collaboration with industries for gaining knowledge about real-time
problems.

3) To prepare students with sound technical knowledge
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PROGRAMME EDUCATIONAL OBJECTIVES

1. Graduates shall have a good foundation in the fundamental and practical aspects of
Mathematics and Engineering Sciences so as to build successful and enriching careers in the
field of Electrical Engineering and allied areas

2. Graduates shall learn and adapt themselves to the latest technological developments in the
field of Electrical & Electronics Engineering which will in turn motivate them to excel in their
domains and shall pursue higher education and research

3. Graduates shall have professional ethics and good communication ability along with
entrepreneurial skills and leadership skills, so that they can succeed in multidisciplinary and
diverse fields.

PROGRAM OUTCOME (PO’S)
Engineering Graduates will be able to:

PO 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO 2. Problem analysis: ldentify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO 3. Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO 4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.
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PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
to the professional engineering practice.

PO 7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

PO 9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO 11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME(PSO’S)

PSO 1: Apply Science, Engineering, Mathematics through differential and Integral Calculus,

Complex Variables to solve Electrical Engineering Problems

PSO 2: Demonstrate proficiency in the use of software and hardware to be required to practice

electrical engineering profession.

Department of Electrical and Electronics Engineering



EE 302- Electromagnetics

PSO 3. Apply the knowledge of Ethical and Management principles required to work in a team as
well as to lead a team.

Department of Electrical and Electronics Engineering



Course code Course Name L-T-P - Credits Year of
Introduction

EE302 ELECTROMAGNETICS 2-1-0-3 2016

Prerequisite; Nil

Course Objectives
e Todevelop aconceptual basis of electrostatics, magnetostatics, electromagnetic
waves
e Tounderstand various engineering applications of € ectromagnetics

Syllabus

Introduction to vector calculus, Electrostatics, Electrical potential, energy density and their applications.
Magneto statics, magnetic flux density, scalar and vector potentia and its applications, Time varying
electric and magnetic fields, Electromagnetic waves

Expected outcome.
The students will be ableto:
i Analyze fields and potentials due to static charges
ii. Explain the physical meaning of the differential equations for electrostatic and magnetic fields
iii. Understand how materials are affected by eectric and magnetic fields
iv. Understand the relation between the fields under time varyingisituations
V. Understand principles of propagation of uniform plane waves.
Vi Be aware of electromagnetic interference and compatibility.

Text Book:
1. Nannapeni Narayana Rao, “Elements of Enginéering Eléetromagnetics”, Prentice Hall India
2. Sadiku M. N. O, Elements of Electromagnetics, Oxford university Press, 2010

Data Book ( Approved for usein the examination):

Refer ences:
1. ChengD. K., Field and Wave Electromagnetic, Pearson Education, 2013.
2. Edminister J. A., Electromagnetics, Schadm Outline Series, Tata McGraw-Hill, 2006.
3. Gangadhar K. A. and P. M..Ramanathan , Electromagnetic field theory , Khanna Publishers,
20009.

4., Hayt W. H. and J. A. Buck ,"Engineering Electromagnetics, 8/e, McGraw-Hill, 2012.

5. InanU. S. and A. S'lnan, Engineering Electromagnetics, Pearson Education, 2010.

6. John Krauss and'Daniel A."Fleisch, Electromagnetics with Applications, McGraw-Hill, 5" edition

7. Murthy T. V. S. A, Electromagnetic field, S. Chand Ltd, 2008.

8. Premlet B4, Electromagnetic theory with applications, Phasor Books, 2000.

9. S.C.Mahapatra and Sudipta Mahapatra ,Principles of Electromagnetics, McGraw-Hill, 2015

Course Plan
Sem.
Module Contents Hours | Exam

Marks

STATIC ELECTRIC FIELDS: Introduction to Co-ordinate System —
Rectangular — Cylindrical and Spherical Co- ordinate System — Gradient of
I a Scalar field, Divergence of a Vector field and Curl of a Vector 6 15%
field- Their Physical interpretation. Divergence Theorem, Stokes’
Theorem. Numerical problems

Coulomb’s Law, Electric field intensity. Field due to a line charge,
Sheet Charge and Continuous Volume Charge distribution. Electric
Flux and Flux Density; Gauss’s law and its application. Electric
Potential-The Potential Gradient. The Electric dipole. The
Equipotential surfaces. Capacitance - capacitance of co-axial cable,
two wireline. Poisson’s and Laplace’s equations

8 15%

FIRST INTERNAL EXAMINATION




STATIC MAGNETIC FIELD: Biot-Savart Law, Amperes Force Law.—
Magnetic Field intensity due to a finite and infinite wire carrying a
current—-Magnetic field intensity on the axis of a circular and
rectangular loop carrying a current —Magnetic vector potential,
Magnetic flux Density and Ampere’s circuital law and simple
applications.

1 6 15%

ELECTRIC AND MAGNETIC FIELDS IN MATERIALS—Electric
Polarization-Nature of dielectric materials-Electrostatic energy and
energy density—Boundary conditions for electric fields and magnetic
v fields-Conduction current and displacement current densities— 8 15%
continuity equation for current.

Maxwell’s Equation in Differential and integral form from Modified
form of Ampere’s circuital law, Faraday's Law and Gauss Law

SECOND INTERNAL EXAMINATION

TIME VARYING ELECTRIC AND MAGNETIC FIELDS:. Poynting
Vector and Poynting Theorem — Power flow in a co-axial cable —
Vv Complex Average Poynting Vector. 7 20%
ELECTROMAGNETIC WAVES. Wave Equation “from, Maxwell's
Equation — Uniform Plane Waves —~Wave equation in Phasor form

Plane waves propagation in loss less and lossy dielectric medium and
conducting medium. Plane wave in sgood conductor, surface
resistance, Skin depth, Intrinsic Impedance and Propagation Constant
VI in al medium. Phase and group velocity. 7 20%
Transmission lines. waves in transmission line —solution for loss less
lines —characteristic impedanee™, VSWR — impedance matching.
Introduction to Electromagnetic interference and compatibility.

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 400 Exam Duration: 3Hourrs.

Part A: 8 compul sory questions.
One question from each module of Modules | - 1V; and two each from ModuleV & V1.

Student has to answer al questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules | & |l. Student has to answer any 2 from the 3
guestions: (2 x 10) =20. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules I11 & 1V. Student has to answer any 2 from the 3
guestions: (2 x 10) =20. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3
guestions: (2 x 10) =20. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.
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DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUB CODE: EE302
SUB NAME: ELECTROMAGNETICS
SEM/YEAR: S6/111

CONTENT BEYOND SYLLABUS

Current density and ohms law- electromotive force and Kirchhoff’s

Law-Equation of continuity and Kirchhoff’s current law-power dissipation and

joule’s law-Boundary condition for current density-Resistance calculations

NAME & SIGN OF FACULTY
(P.SUNDARAMOORTHI)



1)
2)
3)
4)
5)

6)

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
PAMPADY, THRISSUR
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
EE 302 ELECTROMAGNETICS

QUESTION BANK- MODULE — |

Explain the concept of Cylindrical and Spherical Co- ordinate System —
Discuss in details about Gradient of a Scalar field,

Write the importance of Divergence of a Vector field

Enumerate the Curl of a Vector field- Their Physical interpretation.
state and prove the Divergence Theorem,

Derive the expression for Stokes ‘theorem



1)
2)
3)

4)

5)
6)
7)
8)

9)

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
PAMPADY, THRISSUR
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE 302 ELECTROMAGNETICS

QUESTION BANK- MODULE — I

State and prove the Coulomb’s Law,

Discuss in details about Electric field intensity and Field due to a line charge,

Discuss in details about Electric field intensity due to Sheet Charge

Discuss in details about Electric field intensity due to Continuous VVolume Charge
distribution.

Discuss the concept of Electric Flux and Flux Density

State and explain Gauss’s law and its application.

Discuss in details about Electric Potential & Potential Gradient.

Enumerate the concept of Electric dipole and the equipotential surfaces.

Define Capacitance and derive the expression for capacitance of co-axial cable, two wire

line.

10) Derive the expression for Poisson’s and Laplace’s equations
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3)
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5)

6)

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
PAMPADY, THRISSUR
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE 302 ELECTROMAGNETICS

QUESTION BANK- MODULE - 111

State and prove the Biot-Savart Law,

State and prove Amperes Force Law.—

Derive the expression for Magnetic Field intensity due to a finite and infinite wire carrying a
current—

Derive the expression for Magnetic field intensity on the axis of a circular and rectangular
loop carrying a current

Define Magnetic vector potential, Magnetic flux Density

Derive the expression for Ampere’s circuital law List the merits and limitations
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2)
3)
4)
5)
6)

7)

8)

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
PAMPADY, THRISSUR
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE 302 ELECTROMAGNETICS

QUESTION BANK- MODULE - IV
Define Electric Polarization
Explain the concept of nature of dielectric materials-
Discuss in details about Electrostatic energy and energy density—
Derive the expression of Boundary conditions for electric fields and magnetic fields
Define Conduction current and displacement current densities
Derive the expression of continuity equation for current.
Derive the expression of Maxwell’s Equation in Differential and integral form from Modified
form of Ampere’s circuital law,

Derive the expression for Faraday's Law and Gauss Law



NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
PAMPADY, THRISSUR
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE 302 ELECTROMAGNETICS

QUESTION BANK- MODULE -V
1) Derive the expression for Poynting Vector and Poynting Theorem
2) Discuss in details about Power flow in a co-axial cable
3) Define Complex Average Poynting Vector.
4) derive the expression for Wave Equation from Maxwell's Equation
5) Discuss in details about Uniform Plane Waves &

6) Derive the expression for Wave equation in Phasor form
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NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
PAMPADY, THRISSUR
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE 302 ELECTROMAGNETICS

QUESTION BANK- MODULE - VI
Explain the concept of Plane waves propagation in loss less and lossy dielectric medium
and conducting medium.
Discuss in details about Plane wave in good conductor,& surface resistance,
Define Skin depth,
Enumerate the importance of Intrinsic Impedance and Propagation Constant in all
medium.
Define Phase and group velocity.
Explain the concept of waves in transmission line & solution for loss less lines
Write the concept of characteristic impedance &VSWR
Define impedance matching.

Discuss in details about Electromagnetic interference and compatibility
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DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUB CODE: EE302
SUB NAME: ELECTROMAGNETICS
SEM/YEAR: S6/111

ASSIGNMENT QUESTIONS- (ASSIGNMENT - 1)
Answer All Questions (3*10=30 MARKYS)

1. Explain in details about divergence theorem
2. Discuss the magnetic field intensity on the axis of rectangular coil in detail

3. Derive the expression for gauss’s law in details

NAME & SIGN OF FACULTY
(P.SUNDARAMOORTHI)



NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE I\r

%9, (NAAC Accredited)
NCERE (Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala) Since 1968

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUB CODE: EE302
SUB NAME: ELECTROMEGNETICS
SEM/YEAR: S6/111

ASSIGNMENT QUESTIONS- (ASSIGNMENT - 1)
Answer All Questions (3*10=30 MARKYS)

1. Derive the expression for Maxwell’s equation in differential & rectangular
forms of amperes circuit law
2. Discuss in details about poynthing vector &theorem

3. With neat diagram explain in detail about surface resistance and skin depth.

NAME & SIGN OF FACULTY
(P.SUNDARAMOORTHI)
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Coordinate System ang Vector Caleulus (Module 1)

Module 1

Coordinate System and Vector Calculus

"M—
COORDINATE SYSTEM AND

TRANSFORMATION

Ques .1). What do You mean by scalar and vector
quantities?

Or
What is unit vector? Also define scalar and vector
field. ’

Ans: Scalar Quantities

A scalar quantity is defined as a quantity that has
magnit.ude only no direction. Typical examples of scalar
quantities are time, speed, temperature, and volume.

Vector Quantities

A vector quantity is defined as a quantity that has both
magnitude and direction. Typical examples of vector
quantities  are displacement, velocity, acceleration,
momentum and force.

Scalar Field

A field is a region in which a particular physical function
has a value at each and every point in that region. The
distribution of a scalar quantity with a definite position in
a space is called scalar field. For example, the
temperature of atmosphere, it has a definite value in the
atmosphere but no need of direction to specify it hence it
is a scalar field.

Vector Field

If a quantity which is specified in a region to define a
field is a vector then the corresponding field is called a
vector field. For example, the gravitational force on a
mass in a space is a vector field. This force has a value
at various points in a space and always has a specific
direction.

In case if a vector is Unit Vector

known then the unit A
vector along that g g
vector can be /

obtained by dividing /

the vector by its
Figure 1.1: Unit Vector

magnitude. Thus R]
unit vector can be

expressed as, /
direction a  unit

Vector can be used.

Consider a unit vector a,, in the direction of OA as
shown in the figure 1.1. This vector indicates the direction

of OA but its magnitude is unity.

Unit vector can be represented as:

- OA
Unit Vectora,, = —
OA

Any vector A is expressed in two forms:

1) A=(A,,A,,A,). where, A, A A, are
known as the components of vector A.

2) A=Aa +Aa +Aa, where, a,,a ,a,2
re unit vectors along the coordinate axis.

The magnitude of A is written as A,
ie, A=|Al

The unit vector of A is “a ” and it is given by,

~ A
a=-—
Al
Ques 2) Discuss the and
multiplication of vectors.
Or
What do you mean by scalar product and vector
product?

addition, subtraction

Or
Explain the following operations performed on vectors:
1) Addition and subtraction (Sum and difference)
2) Dot product and cross product /Multiplication of
Vectors )
3) Triple product

Ans: Addition and Subtraction / Sum and Difference of
Yectors

The addition and subtraction or the sum and difference of
two vectors are given by,

A+B=(A,+B)a + (Ay+By)a,+ (A, +B,) a,
A-B=(A-Bya, + (Ay-By)a,+(A,-B,)a,

Multiplication of Vectors
The multiplication of vectors is of three types:
1) Dot/Scalar Product: The dot product is denoted by
A.B or B.A and given by,
AB=B.A=ABcos 8
=A«By+A By +A,B,
Here 6 is the angle between the vectors A and B. Dot
product of two vectors is a scalar.
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2)  Cross/Veetor Product: The
by A x B and given by,
AxB=ABsin0 a,.

Cross product is denoted

Where a,, is the unit vector perpendicular 1o A and B
«

4, a, a,
Or AxB= A, Ay A,
4 B, B, B,

= a, [A, B, - AByl +a, [AB, - AR
a, [AB, — A,B,] +
aIAB, - AB, | ' o
Where, A = A4, + Aya, + Aa, and
B =B,a, + Bya, + B,a,

T'he cross product of two veclors is 4 vector,

3) l“riplc Products:  Multiplication of three  vectors

A, Band Cis called vector triple product. The product
of three vectors is classified into two categorices:
1) Scalar Triple Product: For the three vectors

A,Band C, scularltriplc product is defined as,

A.(BxC)=B.(CxA)=C.(AxB)

Since the result is a scalar quantity, this is known
a scalar triple product.

If the components of three vectors A ,B and C
A :(A‘,A),,A,),

B=(B,,B,,B,), C=(c,,C,,C,),
respectively, then the scalar triple product is
obtained by the determinant of a 3 x 3 matrix
given as,

are given as

A, A, A,
A.(BxC)=[B, B, B,
c, ¢, C,

it) Vector Triple Product: For the three vectors A,

B and C, vector triple product is defined as,
Ax(BxC)=B(A.C)-C.(A.B)

Ques 3) If A = 2a, + 5a, + 6a, and B = a, - 3a, + 6a,,

find A + B and A - B.

Ans: A +B=(A+Bya,+(Ay+Bya,+ (A, +B,)a,

=2+ 1)ac+(5-3)a,+(6+6)a,

A+ B=3a.+2a,+ 12a,

A-B=@Q2-Da+(5+3)a,+(6-6)a,

A—-B=a,+8a,

Quesd) IfA=a,+a, + 2a,and B =2a, +a, +a,, find A.B.
Ans: A.B = A,B, + A\B, + A,B,

=12+ 1.1+21
+1+42

non !
A

Ques 5) Given A = 2a, + a, + 2a, and B =2, +2a, +a,,
find A x B.

ctromagnetics (TP Solved Serjes) KT

Ele
. a
a, 4, z|
Ans: AxB=[2 1 2]‘
) 2 1

=4 (l-—4)+n:((2~2)+a,(4-],

A % B =-3a, + 34,
()UCS ()) For A= (11 37 4) and B= (1' 0, 2” find IX.B.

Ans: Here
A, = I,A;,~=3,A,"—'4
B,.= I,B}.:(), Bl:2
A.B=A,B, +AB,+AB;
=1x1+3%x0+4%2
=1+0+8=9
Ques 7) What do you understand by coordinate
systems? Discuss various t_g)es.
r
Describe the following coordinate s_vs.tems:
1) Rectangular or Cartesian Coordinates
2) Cylindrical or Circular Coordinates
3) Spherical or Polar Coordinates

Ans: Coordinate Systems
Coordinate system is defined as a system to dc_scribe uniquely
the spatial variation of a quantity at all points in space. There
are three types of coordinate system as described below:
1) Rectangular or Cartesian Coordinates (x, y, z):
A point P in Cartesian coordinates is represented as
P (x,y, z). The ranges of coordinate variables are:
—m <X <o
—oo L y < oo
- <Z<» (1)

From figure 1.2 (b), it is understood that any point in
rectangular coordinates is the intersection of three planes:
i) Constant x-plane,

ii) Constant y-plane, and

iii) Constant z-plane, which are mutually

perpendicular.
z
A x = Constant
1
z 1
f -
P(x,y.z) [ a,
z = Constant :a‘P
' =
1 a‘
/
1
it e y
L
x‘ y = Constant

(a)

(b)

Figure 1.2: (a) Cartesian Coordinates, and (b)
Constant x, y, z Planes

A_ vector A in Cartesian coordinate system is written as
A=Axa‘+A)ay+AZéZ e (2)

Where, a, ,a,,a, are the unit vectors along the x, ¥
and z directions, respectively.

Y, T T T T et
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FromAlIu:Achlmlions of dot product, we see that
ac.d,=d,.a,=4,.4,=I

A A A

d.dy=a,.4,=4,.4,=0 )]
meﬂlhc Llcfiniti(ms of cross product, we see that

axa =i, xa, =4,xa, =0

Agxd, =4,4, xd, =4, ,4, x4, =4, ...(4)

2) Cylin(lricnl or Circular Coordinates (r, ¢, z): A point P
in cylindrical coordinates is represented as P(r, ¢, z).
Here, r=Radius of the cylinder passing through
¢ = Angle measured from the x-axis in the xy-plane
known as azimuthal angle ’
z = same as in Cartesian coordinates

The ranges of coordinate variables are
0Sr<oo
Nsdp<2n
—00 L7 <00

(5

From figure 1.3 (b), it is understood that any point in

cylindrical coordinates is an intersection of three

planes viZ., |

iy Constant ‘r’ plane (a circular cylinder),

ii) Constant ¢ plane (semi-infinite plane with its
edge along the z-axis, and

iii) Constant z-plane (parallel to xy-plane).
'1",
) ax
r -
P d,
uv
7
i —7—>Y
Y =rsin g LK =T C0S0
\l—
' (a)

r=Constan{_4

JR

)
v
Lol sy
>
.
>

¥ 5 =Constant
(b)
Figure 1.3: (a) Cylindrical Coordinates, and
(b) Constant, r, ¢, z Planes

z = Constant

A vector A in cylindrical coordinate system is written as,
A=Ad, +A0, +A R, (1],

Whered, .4, .4, are the unit vectors along the r. ¢ and

z directions, respectively.
From the definitions of dot product, we see that

=1,.4, =4,.3,

A

a.a,

] A ~ A

=1
a,.4,=d,.4,=4,.2,=0

- b

X

B-5

ons of cross product, we se¢ that

From the definiti ;
=a,Xa,~ 0

ﬁrxﬁ,=ﬁ¢xﬁ¢
a, x4, =4,;8, %4, =4,a,%Xa, =d4 .n(8)
8, ¢): A point P

ar Coordinates (P,
as P (p, 0, 9)

Spherical or Pol
inates is represented

in spherical coord
Here,
= Distance of the point fro

¢ = Radius of a sphere ccen
passing through the point p

0 = Angle between the z-axis and the
P, known as colatitudes

¢ = Angle measured from the x-axis in the xy-plane,
known as azimuthal angle (Same as in

cylindrical coordinates).

m the origin, ‘
tered at the origin and

position vector

The ranges of coordinate variables aré

0€p<oe

0<b<m ...(9)
0<dp<2rm
ry
>y
X
7 (a)
A
) P(x,y,2)
2 =p sin® =P(r, 9, 2)
=P(p, 6, ®)
p
0
Z
— X
6 r L7 x =15in®
________________ ,"= p sin O cosd

y=rsin¢=psin0sino

b)

Figure 1.4: (a) Constant p, 8, ¢ Planes, and (b) Point P. and Unit

Yectors in Spherical Coordinates

A v Y . - -
A vector A in spherical coordinate system is written

A=A, d, +Ad+ A, e (10)
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Where, a,, a5, a4 are the unit vectors along the p, 0
and ¢ directions, respectively.

From the definitions of dot product, we see that

A A

Aty =dgudly =40, =1

A, =gy =,.0, =0 v (1)

From the definitions of cross product, we see that
AyXd, =dgX g =dyXd, =0

XA =8y 38 XAy =14, XA; =dg  ..(12)

Ques8) What do you mean by coordinate
transformation? Also give the relation between
coordinate systems.

Or

Transform the Cartesian coordinate system into
Spherical and Cylindrical coordinate system.

Or

Convert the Cartesian coordinate system into
cylindrical coordinate system.

Ans: Coordinate Transformation

Conversion of one coordinate system into other system is
called coordinate transformation. Transformations of
various coordinate systems are described below:

1)

Transformation of Cartesian (x, y, z) to
Cylindrical (r, ¢, z) Coordinates: The relationship
between Cartesian (x, y, z) and cylindrical (r, ¢, z)
coordinates can be obtained and written as,

r=\lx2+y2 ¢=tan'1(l), Z=Z e (1)

X

andx=rcos§,y=rsin¢,z=z ... (2)

The relationships between the unit vectors are
obtained from figure 1.5 and are given as,
a, =cos¢ a, —sinfa,

a, =sin¢ a, —cos¢ 4, )
4,=4, and 4, =cos¢ 4, +sin¢d,
5¢=—sin¢ dy tcosfd, , )]
a, =a,

Y

Figure 1.5: Unit Vector Transformation between
Cartesian and Cylindrical Coprdinates

The relationship between the component vectors (A,, A,,
A, and (A, Ay A,) are obtained by using equations (3)
and (4) and then rearranging the terms. This is given as,

l"lcctrmn.'ls.’nc!icﬂ (TP Solved Series) KTy

A = (A0S ¢1+Aysin¢) a,+ .
(-A sin¢-l~/\ycns¢):lo+/\,n,
=(Acos 0 — AysSin®) dx + )

(/\,sin(p+/\¢cos¢:)ﬁy+A,ﬁ,

Thus. the relationships bgtwccn the component
vccu;rs can be written in matrix forms as,

A, cosd sind 0|l A,

A,y |= —sin¢ coso 0 Ay

A, 0 0 1A,

Ay cosd —sing 0 A,
and |A, [=|sind cosd O] A, ..(6)
AZ

0 0 1| A,

2) Transformation of Cartesian (X, ¥, z) t'o Spherical
(p, 6, ¢) Coordinates: The relationships between
Cartesian (x, y, z) and spherical (p.B. 0) coordinates

can be written as,

2 2
g VXTHY©
p=,/x2+y2+zz, 9=tanl—z— ,

o= tan'l[l)' N )

X

and x = p sin 0 cos ¢,
y=psin@sind,z=p cos B ceene(8)

The relationships between the unit vectors are
obtained from figure 1.6 and are given as,

i, =sinBcos¢d, +cosBcos iy —sind,

a, =sinBsin 04, +cosBsin i, +cosod,, ....(9)
a, =cos8d, —sinBi,

And, 4, =sinOcosa, +sinBsin ¢a, +cosBa,

dg =cosBcosda, tcosBsinga, —sin®a, .. (10$)

ay =sin i, +cosfa,

Z )
A ,’?\
" \\
~ ,” \‘
—ay - A
L4 ~
\\ ~
S
\\
90-6| 6
. 90-0
d N
Y S a,
0 e
rd
rd
. ”
-
0 -
ay

a
X
Figure 1.6: Unit Vector Transformation for Cartesian and

Spherical Coordinates
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Coordinate System and Vector Calculus (Module 1)

3)

The relationships between the component vectors (A,
Ay, p:z) and (A,, A,, Ay) can be obtained by using
equations ‘(9) and (10) and then rearranging the terms
This is written in matrix form as, ‘

A, sinfcos¢ sinBsing cosO |[A,

Ag |=|—cosBcosd cosBsing —sin® Ay
A, —sin¢ ' cosd 0 LA,
U A (1
A, sinBcos¢p’ cosBeos¢p —sind ‘Ap_
A, |=|sinBsind cosBsing cosO || Ag

1A, cos0 ~sin@ 0 A

e (12)

Transformation of Cylindrical (r, ¢, z) to Spherical
(p,' o, .¢) Coordinates: The relationships between
cylindrical (r, ¢, z) and spherical (p, 8, ¢) coordinates
are written as,

p=\/r2+22 9=Ian"(£), O=0 .. (13)
And, r=psin® ¢=0 z=pcosB w(14)

The relationships between the unit vectors are

- obtained from figure 1.7 and are given as,

Figure 1.7: Unit \'eclor-Trnnsfdmlation for Cylindrical
and Spherical Coordinates

a, =sinBa, +cosBa,

dy =cos0cos 0d, -sin0a, v (15)

23>
Il
£

o =8¢

And, 3, =sin6a, +cosBcosdag

A

dp =2
5z=coseﬁp-—sin659 eeen (16)

The relationships between the component vectors (Ap.
Ag, Ay) and (A, Aq A;) can be obtained by using

N

B-7

jons (15) and (16) and then rearranging the

equat

terms. This is written in matrix form as,
Ap sin®@ 0 cosO || A,
Ag |=|cos® 0 —sin@ || Aq e (17)
Ay 0 1 0 A,
A, sin@ cos6 O] A,

And |Ay|=| O 0 1| A ....(18)
A, cos® -sin® Of| A,

Ques 9) Transform Vector A=ya, + (x+z)ﬁy
into spherical coordinates system. Also evaluate
at p (-2, 6, 3).

Ans: In spherical form

A, sin@cosd sinBsind cosB y
Ay |=|cosOcosd cosOsing —sinB|=|Xx+2Z
A, ,—sin¢ cosd cosd 0

Or,A,:ysin9c0s¢+(x+z)sinesinq)
A9=ycosecos¢+(x+z)cosBsin¢
Ay =-y sin ¢ + (x +2) cos ¢

Butx=rsin6cos¢,y=rsin95in¢,andz:rcosB

Substituting these yields:

A = (A, Ag, Ap) = r[sin®Bcosd sin ¢ +(sin 6 cos ¢ + cos
0)sin O sin ¢]a, .
+ r[sin @ cos O sin ¢ + (sinB cos ¢ + cos
0) cos 0 sin ¢lag+ r[-sin O sin2¢ +(sin©
cos 0 + cos B)cos ¢la,

At point P(-2, 6, 3)
x=-2,y=6,z=3

Hence, ¢ = x> +y> =v/4+36 = 6.32

o 4 6
6 =tan 1Y _tan 2
X

z=3
r=yx’+y?+2? =J4436+9 =7
1 \}x2+y2 tan] m
3

6=larl_ _— -

And,cosQ)='_—2

Jao’

cos¢=251n9=J—4_g
7 7
A=7.{19. 2 6 (J -2 3) 450 s
29 730 Jao | 7 a0 1) 7 Jao |
| +7[i_42.£._6_.-2+ o -2, 3)3 6
7 7 Ja0 Jao | 7 Jao 7)7 Jao |

Scanned by CamScanner



&l‘

~pm -+ —
7 Jao 7
-6 18 38 .
=00, =1y~ ==,
770 740" V4o
=-0.8571a, - 0.4066ay — 6.008a,

+7 —mi'[\/fﬁ -2 3]‘ —~‘2>
J40

7 40 | 1 . e

Note: |Al is the same in the three systems; i.e., IA(X, y, 2)I
=1A(e. ¢, 2)I = 1A(r, 0, 9) = 6.083

Ques 10) Transform the point P (1, 1, 6) in spherical
coordinate system.

Ans: AtpointP,x=1y=12=6
The spherical coordinates are (r, 0, ¢)

s r=y Xy 27 =P+ 4367 =38 =6.16

A S Y|

=tan =13.26°
6

O=tan”
X

=45°

— ] —

o= tan™ 2 = tan”
X
Hence the spherical coordinates are (6.16, 13.26°, 45°).
10 ; A
Ques 11) Express B=| — [r+rcos0-0 in cylindrical
r

coordinates.

Ans: For spherical to cylindrical vector transformation

10 -
Bp sin@ cos® O —
. r
B¢ = 0 0 1|[rcos6
B, cos@ —sinB 0 1

or B, =lgsi|19+rc0526
r
B¢=l

B, =I—Qcose—rsin BcosO
5

But r=4/p>+2° and 8= tan™ P
z

N p Z
Thus Sin0 = ——— c0s=———
VP t+z° N[ A

10p [2, 2 2

‘ By=m— 5 tVp +z°—5—
| p +z p +z
! 10z 2. 2 P
| Bz= 3 2 p’+Z-'_31—2
; p +z p +z
i

Hence,

B= 710pq+ 2 a,+3,+ ,IOZZ— f‘ a,

p +z”  Jp+z? pt+z \/p‘+z2

i
PR

P e AR AR (i  —

Il c(umm)’lu'li(‘“ (TP Solved Series) KTy
ae 4

R CALCULUS

rentinl length, aren ang
cylindrica)

VECTO

Ques 12) Determine
volume for Cartesinn
coordinate systent. .
acement, area and volume
| coordinate systems,

the diffe
spherical and

mental displ

Obtain the cle :
ndrica

for spherical and ceyli
/ v
Ans: Differential Length, Area and  Volume for

Coordinate Systems . " et
To obtain the differential elements in length, area and
1

llowing figures L8:
volume, we consider the following figure

z
dy
dz
7
RE
’
dx
A
A
d A
/ I y
. d\ N
d,
X
y
.
x/
()
S
\\d‘,ll
dz | !
-~ rd¢
P e
dr4F —> v
Y
R By
3y /’
~
X
(b)

Figure 1.8: (a) Differentia] 1]
- ileme
(b) Differential Elements i C
(c) Differential Eléments i

nts in Cartesian Coordinates,
ylindrical Coordinates and
n Spherical Coordinates
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Coordinate Syst
ystem ang Vector Calculus (Module 1)
These relations

are ojver
Table 1.1: Diffe &1ven in table 1.1, N

rential g i
al Elements in Different Coordinat

Differential | C; iz Y
Elements Cogtl:(tlcis“" Cylindrical Sl’hel‘? §-‘lﬂcms
Nates | Coordinates Cﬂol‘(]illc:;:(
) \S
Length dS=dxj s
ﬂ: - "‘dx' ds:drf\r ds = dpj -
iy +dot, +rd¢ﬁ¢+dz;‘17 : lpdp +Dd0u9
. +psinfdegi
Area S=dydza ?
dS=dydza, +drdza § = n2:
+dxdz:’iy ) ) dS=p smededq)ﬁp
fixdyd dS=rd¢dz:‘nr +psin9dpd¢)ﬁe
z .
+rdrdga, +pdpdeﬁ¢
Volume - |dV =dx d
y dz = 2
‘ Z]W rdr d¢|dV = p? sin © dp de
z do
ek, S

gluzsdl_S) \Yhat (.]o you mean by vector integration?
so discuss the line, surface and volume integral

Ans:. Vectoxj Integration or Vector Integrals
The integration of a vector may be obtained in threec ways

i.e., line integral, surface inte i

. ) gral and volume i al ¢

discussed below: egral as

1) Line Integral: The line integral of a vector is the
|r'1tegral of the dot product of the vector and the
differential length vector tangential to a specified path.

For vector Fand a path (, the line integral is given
by,

jf:.d—c ;T]ﬁcosedf R (1
/ a

2) Surface Integral: For a vector F, continuous in a
region containing a smooth surface S, the surface

integral or the flux of I—:through S is defined as,
y=[FdS=[Fa,ds= [[Ffcosods ... @
S S S

Where, fln = Unit normal vector to the surface S.

Surface

Figure 1.9: Surface Integral

Ques 14) Given that [)=(
4

5r2

)r in  spherical

coordinate. Find the volume enclosed betweenr =1, r =2,

Ans: V = IV‘ Ddv (volume enclosed)
dv =’ sin 0 dO d¢ dr

v.p L|or(s?
r2| or | 4
_afafs |1, 200
2ol 4 || 2 4 =3

v:j(v-D)dv

=5r-r'sin @ - O d¢ - dr

N 5'2[ r3drTsin Bdezqu)
1 0 0

AT

r

= S{Ijl -[-cosB]f x2n
|

=%[16—1]X2X2n=¥x4n =751

Ques 15) What do you r‘ncan by Del operator?

Ans: Del Operator or Differential Vector Operator (V)
The differential vector operator (V) or Del or Nabla, in
Cartesian coordinates, is defined as,

9. 9. 9. -
,+— —h

This Del is merely a vector operator but not a vector
quantity. When it operates on a scalar function, a vector is,
created. Since a vector, in general, is a function of a space
and times both, the del operator is a vector space function
operator. It is defined in terms of partial derivatives with

respect to space. ,

1 N R 1 9

=——a—al+L : a, - )
h, du, h, du,

_ For the different coordinate systems, values of hy, h,, and
h; are given in the table 1.2 below.

Table 1.2
Coordinate System | hy | h; h;
1|1 1

Cartesian System
|

3)

The volume integral of a scalar

Volume Integral: lume
V is written as, -

quantity F over a volume
U= [Fdv
\V

intearal is necessary 1O

olume :
an object, which are

The concept of V
calculate the charge or m

distributed in the volume.

ass of

N e T T _,___.__.._,.,,—- _ ~ ‘.-

Spherical System

Cylindrical System | 1 | p
r | rsin®

Substituting the values of h
systems, we obtain the rel
coordinate systemis as,

in different

ation of del in thre

coordinate
e different

ﬂ:ﬂ_
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B-10
o B . .
. aax +5?a}, +a—zal (Cartesian coordinates)
i (3
9. 1da. 3. N
= El:a' +;a—q}a¢ -!~$az (Cylindrical coordinates)
4
d. 19. 1 9 ()
=o—a,+——ag+————3
dp ° pab " psinBIp °
(Spherical coordinates)y (5)

Ques 16) ‘Describe the gradient of a scalar field,
dwel:gence and curl of a vector field. Also give its
physical interpretation or physical significance.

Or
Define the values of divergence, gradient and curl for
spherical and cylindrical coordinate systems,

Or f
Explain the physical significance of divergence and curl.

Ans: Gradient of Scalar Field
Gradient of a scalar is a vector and is defined as,

aV aV Y%
V= — =
axa""-l‘aya’—{ﬁazaZ

Examples are gradient of temperature, gradient of electric
potential and so on.

It gives the maximum space rate of change of the scalar.
The scalar can be temperature, potential and so on.

Physical Interpretation/Physical Significance
The gradient of a scalar quantity is the maximum space
rate of change of the function.

For example, Let us consider a room in which the
temperature is given by a scalar field T, so at any point (x,
y, z) the temperature is T(X, y, z) (assuming that the
temperature does not change with time). Then, at any
arbitrary point in the room, the gradient of T indicates the
direction in which the temperature rises most rapidly. The
magnitude of the gradient will determine how fast the
temperature rises in that direction.

1 oF 1 JoF . 1 JF .
VF=z——a4;,+——a,+———4 )]
‘ hl aU] al h: au: h3 au3 .

dF. OJF. OF.
== —a,+—a, .. 8)
VF axa"+aya’ azaZ (
(Cartesian Coordinates)
dF. 10F. +£ﬁ )

=;a,+-r-5gao 5 z

‘(Cylindrical C-ordinates)

oF . 1 dF. 1 OF.
- 28 e — e (10)
3p 500 psin6 a0
(Spherical Coordinates)

Divergence of Vector Field s -
Divergence of a vector at any point 1s defined as the limit
of its surface integral per unit vol_ume as the volume
enclosed by the surface around the point shrinks to zero.

Elcclmm:lgnclics (TP Solved Series) KTy,
fFa3 §F.a,ds
- e =Liml| £ cerns (1
S divF=V.F= LLT 5’;—— IV‘LT ' ‘

rbitrarily shaped region i
S is the surface of thy
a surface integral with

at surface.

Where, v is the volume of aa
space that includes the ponqt,
volume, and the integral 1S
a_ being the outward normal to th

is the divergence of the vector.

L. (av, 9V, 9V
div F=V.F=(—a—;'—+—a—y—2+ 5 e (2)

By definition, this

Physical Interpreration/PhySical Sig.nifi.cance
The physical interpretation Of significance  of the
divergence of a vector field is the rate at which the density

of a vector exits a given region of space.

For example, we consider air as it is h'eated or co_oled,
The relevant vector field for this example is the velocity of
the moving air at a point. If air is heated in a region, it Yvi]l
expand in all directions such that the velocity field points
outward from that region. Therefore, the divergence of the
velocity field in that region would have a positive value, as
the region is a source. If the air cools and contracts, the
divergence is negative and the region is called a sink.

By definition, this is the divergence of the vector.
= 1 d J J
VF= —(Eh,h;)+——(F,h}h,)+——(F,h,h,
hjh;h, {aul( et auz( i) aus( v -)]

= (3).

By substituting the value of h,_h,, h; from table 1.2 i.e.,
For Cartesian Coordinates h,=h,=h;=1

For Cylindrical Coordinates h,=1, h,= p, hi=1

For Cylindrical Coordinates hy=1, hy=r, hy=r sin 0

The relation of divergence in three different coordinate
systems is given as,

AL L 25

dx dy 9z -
(Cartesian Coordinates)
10 10E
=—— rF,)+——'1+2F—’ . (5)
ror rdd 9z
(Cylindrical coordinates) .
d ) 1 OF
== =—(P’E)+——=_(E, si hicud
p* dp PE) psineaﬂ(Fesme)ersinB a0 sl

(Spherical coordinates)

Curl of Vector Field ‘
It is defined as the limit of the ratio of the integral of the
cross product of the vector with outward drawn normal

over a closed surface, to the volume enclosed by the
surface, as the volume tends to Zero.

Mathematically can be written as,
$Fxi ds $Fxds

Curlf:=l._.irg § =Lim|S— | ... (11)
Y= v v—0 v
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coondinate System and Vector Caleulus (Module 1)

{n matrix form. this can be written as,
i A A
Sy . l) |l’

- | d ) Jd

VxF=l/—m— — _—
ax ay az e (12)

F‘ F) Fz

physical Interpretation/Physical Significance

The ph.\'siL:aI iptcrpmmtion or significance of the curl of a vector
at any point is that it provides a measure of the amount of
rotation or angular momentum of the vector around the point.

Or in matrix form,

= (- 1 ) ) 0
VXF—(h Y . (13)
1112115 alll ,auz au3

Flhl FZhZ F3h3

By substituting the value of h, h,, h; from table 1.2 i.e.,
For Cartesian Coordinates h;=h,=h;=1

For Cylindrical Coordinates h =1, hy= p, hy=1

For Cylindrical Coordinates h;=1, h,=r, hy=r sin 8

Or in matrix form as,

a, éy a,
- |9 9 0 ) .
VxF=|— — —{ (Cartesian Coordinates) ...(14)
ox dy o0z ,
F F F
a, ra, a,
1\lo 9
=|-|l— — = (Cylindrical Coordinates)...(15)
(r) o 9 oz
E 1F, E
a, pa, psinba,

(e 2 2
p’sin@ J{op 90 a0
F, pF, psin6F,

(Spherical coordinates) ....(16)

Ques 17) Find the gradlent of the following scalar
fields:

1) F=x*y+¢

2) V=rzsin ¢ +7* cos’ ¢+r

3) S=cosOsin ¢ 1np+p’o.

Ans:
1) The gradient in Cartesian coordinates is given as,
VF_a—F +8F. +—a£?1 =2xa, +X a +e’a,
dy 7 oz :

2) The gradient in cylindrical coordinates is given as,
8V V. 0V,

4, +—-a
or rod

= (25in ¢+ 20)d, +— (cos§=2*2cosgsin ),

VV=—r

+(rsin¢+2zcos’ )d,

' o apn . [a,+a
=(2rsm2¢a,+21rcos.2q>a,3,)~{r‘r q¢]

T e— 2NN ZEAFOR ™

T——— & ey O PER 7 Teem——

2 ,
: z [
= (28ind+2r)a, +| 7cosQ ~——S8IN 26 [a,
r !

L J

+(rsing+ 2zcos’ )i,

3) The gradientin spherical coordinates is given as,

oS . 10S. 1 dS.
VS-— p+———219+ —d,
op p 0o psin 0 Jo

=(M+2p¢Jﬁp +Lgin0sinoln pag
p p

+ (cochosq)lnp+pl')ﬁo

psin@

B (cosﬁsind} +QP¢)5P e sin0sind Inpi,
P

(cote
.+.

p
Ques 18) Find the rate at which the scalar function

V = r? sin 2¢ in cylindrical coordinates increases
in the direction of the vector A =17, +a, at the

T
oint | 2,—,0 |.
P [ 4 )
Or

Find the gradient of the scalar function V = * sin 2¢
and the directional derivative of the function in the

cosdlnp +pcoseCBJﬁ¢,

o _ n
direction (A, +2,) at the point [2,2,0) .

Ans: The gradient in cylindrical coordinates is given as,

av.,. 1aV
VV=— o a, +-— a¢‘¢+aa—\2ﬂ = 2rsin 294, +2rcos 204,

= 2r(sin 204, +cos 2, )

The direction derivative is given as,
VV.i, =WV
[Al

V2
= \/Ersin 2¢+\/5r0052¢

n \
At (2,2,0} the directional derivative is given as,
VV-5A=\/§x25in§+ 2 x2 cos g =22

Ques 19) Determine the divergence of the vector
field given as,

—

PO SN .
V=pcosha, --;sm()a0 +2p’sin0a,

T T e
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Ans: The divergence in spherical coordinate system is

given as,
1

= 1 3 J
VoV=——(p7V)+ (Vysin0)

p” Ip psin 0 00
L
psin® d

1 i )

=—‘—a-(p’xcosﬁ)+ 4l i —lsin'ﬂ
p-op psin®dbl p

d o

—(2p~sinB

psing 60( ARSI}

+

2
=3cos0——; 1~_ 25inBcos0+0 =| 3——: |cosO
p-sin® p-

Ques 20) Determine the curl of the following vector
fields:

1L F=x"ya +y°za —2xza,

2) A=r’sina +rcos’ 0d, +ztan o,

coSO o

sinQ .
0, A,

3) ‘—7:_“‘
p-

hl B

o’

Ans:
e Y -~ ’ -~ ~
— x vy rman %
1) F=x"ya,+yzd, —2xzi,

The curl in Cartesian coordinate system is given as,

a, 4, a,| |a, a, a,
- |0 d 0 d 0 ]
VxF=|— 2 ZfJ°2 =2 2
ox dy dz| [dx dy 0oz
B ol
E E E| [y yz -2xz
REN A
==-y-a, +2za, —x"a,

T 2 . A 2 - A
2) A=rTsin¢a,+rcos” ¢pa, +ztanga,
The curl in cylindrical coordinate system is given as,

a, ra, a,

r)lor 00 oz
A, TA, A,

10A, 0A, . [0A  0A,7.
=|—-——- a +|—-—=%1a
r 00 oz 0z or |°?

A8\I A 7.
= [l =(rA )=k 13
+Lr)[8r(r o) 00 Jq'

=—(zsec ¢-Ma, +(0-0a,
r

1 > > R
+(— (2rcos” 9—r-cosd)a,
r
N

1 34 " > B -
=—[zsec” ¢a, +(2rcos” O —r" cos)a, ]
i

3) V= sm‘(:)ﬁp _ C0§¢5o
P P

that:

[Electromagnetics (TP Solved Series) KTy

a] coordinate system is given as,
Z

The curl in spheric X M
i’ip pig psin tlo

) [ ! J d 95 Z
VxV=l—5—"15 20 o)
prsin® /iR vy psinBV,

Vg |4
| __a‘"-nev)____e]il
=(m)[ao“‘ Yl

| 1 an _‘_‘2
+—.[; sin® dp Ip

1| d WV |
+‘—)'[;_);(pv0) 0 J‘ICD .
= ! —a—(sinecot(’b]—o}ﬁp
psin@ )| dO p”
o) (ol
plsin® dbl p~ p\ p )]
1 d [sind ||~
o= 2= ]
+p[ 99( p* JJ%
1 cosBcosd | .
= N a
(psin@)[ p’ JP

s o),
plp-sin® p~

(pV¢) ﬁo

- 1 R I [ coso &
s Vxv= —cotecolq)]a +—( - +cos¢]u
(93 Poptsing !

Ques 21) If A = xz%§ —2x1yzj + 2yzﬁ§, find Curl A at
the point (1, -1, 1).

Ans:
i, i, a

vxa=ld 2

ox dy

3 2
Xz =2xyz 2y}

z

a ) - bl -
= =(27" +2x%y)i +(3x2” ~0)i, +(~dxyz-0)d,

— (5,4 254 24 -
= (227 +2x"y)a, +3xz ay —4xyza,)

- VA =(2-2)4 2 A2 A
i (2-2)a +34, +44, =34, +44,

Ques 22) State and explain divergence theorem.

Ans: Divergence theorem

Lgt Fbe a smooth vector field defined on a solid region V
with boundary surface A oriented outward. This is showed

j?-di\':jdivr‘:dv
A v

For the Divergence Theorem, use the same approach as
used for Green's Theorem; first prove the theorem for
rectangular regions, then use the change of variables
formula to prove it for regions  parameterised by
rectangular regions, and finally paste such regions together
to form general regions.
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Coordinate System and Vector Caleulus (Module 1)

Consider @ smooth veetor field F defined on the rec
olldV.1<K<b c<y<de<z<l West

art by computing

the flux of F through the two faces of V perpendicular to the (J_'S = rdrd{pu,

x-axis, Ai and A, bOlh oncnlcd outward.

]f:-de _[F' _[ jﬁ(u.y.zxiydm
[

Ay Ay

d

0 t—

fd
J r(h~)’,2)--F,(zl,y,z))dydz
cc
By the fundamental thecorem of calculus:
b
F(b.y.2)-F(a,y,2) =jﬁdx
Y ox

So,

[Faks [For=] | [Povayar= [ 20
B [5-axdy L—iadv

Ay A, a

By a similar argument, we can show:

deA+jF dA = J'aF‘

Az

deA+[FdA j ‘dv
Ag A,

Adding these, we get:
oF aF, aF
F-dA = : 3ldv = |divFdV
{ J [E)x y azJ I '

This is the Divergence Theorem for the region V.

Ques 23) Give  that  A=30¢"a, —2za, in

cylindrical co-ordinates. Evaluate hoth sides of the
divergence theorem for the volume enclosed by r =

=0and z = 5.

Ans: The divergence theorem states that;

fR. 5= (9 R

A}

Now, fA-ds=| §+§+ § |A-ds
s side  top  bottom

-

: = . . .
Consider dS normal to a, direction which is for the side

surface,

=3 .
" dS = rdodza,
- AdS=(30e"a, —”zn )- rdOdza
=30rc"(ar ‘a, )d(bdz: 30re~"dodz

§ ;\’(YS =’T JS.BOre"d(bdz withr =

side 0=02=0

=30 %2 x e x [0 x[z];=255.1

jr(b y.z)ly dz

B-13
angular The dS on top has d|ru.uona thcc for top surface,
.. A-dS =(30¢ "a, —2za,) rdrdoa,

= 2zrdrdo (a,-a,=1)

2n 2
g § Zd—éz f J-—erdrd(p withz=35
top o=0r=0

52
—2x5x {%} x [6)" = — 401

0

While dS for bottom has direction —a, hence for bottom

surface,
— -
dS= rdrd¢(-a,)

K-dS =(30e™"a, —2za,) - rdrdo(-a,)

and I
= 2zrdrdo (az-a,=1)
But z = 0 for the bottom surface, as shown in the figure 1.10.
—
a, y
. Z=5
i ﬁ@\
dS
I:SJ\‘/
N -

the |t ar

2,z ;
z=0
P -a,
Figure 1.10:

- —
s §A-dS=255.1 - 407 + 0
i ‘
=129.4363 '
This is the left hand side of divergence theorem;
—
Now evaluate .[(V -A)dv

V.Azli(rAr)+_l,aAo 4 aAo

ror r do Jz
And, A;=30e", A,=0, A,=-2z

~ V-A

d
——(30 —
rar( re” )+0+a (-22)

=;{30r(—e" )+ 30e“(1)}+ (-2)

=-30e™" +-?£e'r —2

r
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5. 2x 2
J'(V.X)dv= j’ f j‘ (—30e"'+?e"—-2}drd¢dz
v 2=0¢=0r=0
5 i 2
= i J’(_30re-'+30e"-2r}|rd¢dz
z=0¢=0r=0

- {_ 30{9_—1} -[ (—30{ °_| }1”3{‘*__’;} _[2 % J][ZEM‘S"

Obtained using integration by parts:

=[30r¢=:"r +30e™" -30e" - rZE[S][2n]
= [60e*-22[10x] = 129.437

This is same as obtained from the left hand side.
Ques 24) State and prove stokes’ theorem.

Ans: Stokes’ Theorem

This theorem states that the line integral of a vector around
a closed path is equal to the surface integral of the normal
component of its curl over the surface bounded by the
path.

Mathematically can be written as,

$Ed7 =[[(VxF)dS=[[(VxP)i,ds ...q)
L S S

Where S is the surface enclosed by the path L. The

positive direction of dS is related to the positive sense of
defining L according to the right-hand rule.

Proof of Stokes’ Theorem
Consider an oriented surfaces A, bounded by the curve B.
We want to prove Stokes’ Theorem:

qurll—:-dx_x=j F-dr
A B

We suppose that A has a smooth parameterisation T =
T (s,1), so that A corresponds to a region R in the st-plane,
and B comresponds to the boundary C of R as shown in
figure 1.11. We prove Stokes’ theorem for the surface A
and a continuously differentiable vector field Fby
expressing the integrals on both sides of theorem in terms
of s and t. and using Green’s Theorem in the st-plane.

First, we convert the line integral I?-d?imo a line
B
integral around C:
= - or - dr
dr =| F-—ds+F-—dt
fBFdr _|'CF ds+F
So if we define a 2-dimensional vector field
(-;=(GI,G3) on the st-plane by,

G, =ﬁﬁand G,=F.
ds

¥

2 R ——— -

El“m,m;,gnctics (TP Solved Series) K11y

then, Iﬁ-d? =Ié»d§
B c

using S to denote the position vector of a point in the .

plane.

What about the flux integral L curl F-dA that occurs on

the other side of Stokes” Theorem?

In terms of the parameterisation,

- - dr_dr
F.dA = — #—dsdt
Lcurl F-dA IR curlF. % 3

Since,
= dr _dr _dG, QG_,

F.——" — e —
curl e % g

= = oG, dG; |,
CdA = | —2 _Z=1 dedt
Hence, IAcurl F-dA J.R( E» Y, s

We have already seen that;

[F-di=[G-d3

‘B c

By Green’s Theorem, the right-hand sides of the two

equations are equal. Hence the left-hand sides are equal as
well, which is what we had to prove for Stokes’ Theorem.

z
5 x
Figure 1.11: Region R in the st-plane and the

Corresponding Surface A in xyz-Space; the Curve C
Corresponds to the Boundary of B

-

B

Ques 25) Given K:2r005<;)§r+r5° in cylindrical
coordinates. For the path shown in the Figure 1.12,
verify Stoke’s theorem.

y

0 > 1 — X
Figure 1.12

Ans: According to Stoke’s theorem,
fA-dL={V[xA).aS
L s
For LH.S.,dL =drz, +rd¢a, +dza, in cylindrical system.
There are three paths for which evaluate L.H.S.
~ §A-dl= [ Adr+ [ Adr+ [A[rdo]
] :

pathl path2 path3
Where A, =2rcos 6, Ay =r, A,=0
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Coordinate System ang Vector Cateutus (Module 1)
For path 1, the direction s a, while for path 2

. - 2 also the
direction is . For path 3 the direction is a,.

e o 1 =x/2
f;\-dL: J'zrcos¢dr+ I2rcos¢dr Ir’d¢
L r=] =0 $=0
¢ =90° o=0° r=1
1
____0+2 0 l'2 2 n/2
cos 5 +() [(bE
0
Aol T 24
=2x+2= 2":2.5707A ..LHS.

For RH.S. find VXA first in cylindrical system.
~VxA= I:.l.&_ dA, :|£r+[aAr 0A, ]5

r o dz oz or |°
L 13kAy) 10,1
4ar or r 00 2

EE—————A R L

2 Yo ol
&)+ 0+[_|__(_7L __I.'_)J.‘_.rTL.(.).S_(’JJ

=[2-2(-sin¢)fi, =[2+2sin ok,

As surface is in a, direction hence
dS =rdrdo a,

~ |vxA|dS=[2+2sin6)rdrdo

x/2 |
RHS.= (VxK)-d-g:t [2+2sin 6} drde
§
s ¢=0r=0
5l

= [g—J x[ZQ— ZCOSQF,I:

0

.
=lx['x“ -0-0+2]: L
2 )

“~

+
(3]

=2.5707A

Thus as L.H.S. = R.H.S., the Stoke’s theorem is verified.

o o s el i S P
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Ques 1) State and explain Coulomb’s law.

Ans: Coulomb’s Law
This law states that the force between two point charges:
1) Acts along the line joining the two charges.

2) Is directly proportional to the product of the two
charges. :

3) Is inversely proportional to the square of the distance
between the charges.

Let us consider two point charges Q, and Q, with
separation distance R, as shown in figure 2.1 (a) and

figure 2.1 (b): Q Q. i
e, SRS O aaund

(b)
Figure 2.1: Coulomb Interaction between Two Point

Charges (a) Like Charges, and (b) Unlike Charges

The force exerted by Q; on Q; is,
QIQ.‘ ,‘1
R_‘

R

o

Bevl]

RI2

Where. K is the proportionality constant, which takes into
account the effect of the medium in which the charges are
placed and dg, is a unit vector directed from Q, to Q..

In SI unit, charges expressed in Coulomb (C), the distance
expressed in metre (m) and the force expressed in Newton
(N). the proportionality constant is given as,

1

dne

Where,
€ = Permittivity of the medium = &€,

T e s ——

Electromagnetics (TP Solved Series) KTy

Modiule 2

Static Electric Field

€ = Permittivity of free space

- _g854x10™F/m
36mx10°

€, = Relative permittivity of the medium

Thus from equation (1), the Coulomb’s law in SI unit
becomes,

o
© 4meR”

RI2

Origin

Figure 2.2: Coulomb Vector Force between Two Point Charges

Similarly, force exerted by Q, on Q is,
B QQ

5 A
o0 2
2 R: nH:l

Where, two charges have the position vectors of L and T,
respectively, as shown in figure 2.2.

Ques 2) Discuss the applications of coulomb’s law?

Ans: Applications of Coulomb’s law
Coulomb’s law is used to:

1) Find the force between a pair of charges.

2) Find the potential at a point due to a fixed charge,

3) Find th; electric field at a point due to a fixed charge.
4) Find the displacement flux density indirectly.

5) Find the potential and electric field due to any type of
charge distribution,.

6) Find the charge if the force and the electric field are
known. ‘
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static Electrie Field (Module 2)

Ques 3) Define Eleetric field and electric field intensity

and  formulate i o yarjous charge
distributions/charge densitics,

Ans: Electric Field

For an electric charge, there is a region in which it exerts a
force on any other charge. This region where a particular
charge exerts a force on any other charge located in that
region, is called the electric field of that charge.

Flectric Field Intensity
Electric field intensity E is the force per unit charge when

placcd in the field.

E=Lim E
. Q=0 Q
Or Simply E F (1
r iy
T )

It is seen that the field intensity is in the same direction as
the force and is expressed in Newton per Coulomb (N/C)
and volt per metre (V/m).

Electric ficld is also defined as a negative gradient of a
potential due to a charge, that is,

E=-V.V, volts/metre

Thus, if a point charge Q, is present at position vector T,
then the field intensity due to the charge Q at position
vector T is,

Q. i = QI(FI—?)

E= -
4neR* ® 47rs|Fl —fl‘

Electric field due to various charge distribution
By definition, line charge density is given by

P =-3% C/m

Surface charge density is given by

dQ ,
=— C/m~
Ps=3s

Volume charge density is defined as,

Electric field due to surface charge density,

E=Ls
2,

a

Electric field due to a uniform infinite line charge is given
by,

B-17

Ques 4) Find the electric field intensity due to infinite
line charged wire (line charged).

Ans: Electric Field due to a Line Charge

Let us consider an infinitely long charged wire of
negligible thickness and having a constant linear (.:hargc
density p. Let a point P be at a distance y from the wire, as
shown in figure 2.3.

It is required to find the electric field intensity at P. Let us
assume that the wire is made up of a number of infinitely
small elements of length, dx. Let one of such elements be
at a distance x, as shown in figure 2.3. Let the small
charge on element be dg.

dq=p dx

The field due to this charge dq at point is:
_ 1 ~dg __dg
dne, (NP)*  dme,r’

The x and y components of dE are:
dE, = —dE sin 0 and dE, = - dE cos 0
Y

dex-- 19
o

<y P

dE,
y
L e e b e e d -_X

Nie— X—»| |«— .

dx
Figure 2.3

The x-components of field at P cancel out each other’s
effect. Therefore, the net field will be due to y-components
only and is directed along y-axis.

The resultant field is,

X=t4oo X= oo

- )
E= .[dEy = J.dEcose =I2dEcose =I 2dq —cos9
X=—co R=—o0 0 0 4neﬂr-
= 96d -
=I P xz cosB = P Jd—fcose
o dme r 2me, y r
From figure 2.3, we have; X tan©
y
X 2 2
—=sec’0 or dx = ysec” 0 d6,
Also, x> +y? =
0=r/2 2 -
9 6=n/2 2
E=_P j yse;c ?Gc()w: p _[ ysec’ 0do cosO
2ne, 5 xX'+y’ 2ne, ¢ y'tan’@+y’
_p "fysec’de b=nl2
P "yseclodg o p “Feosd g
2ne, 3 y’sec’® 2ne, 5y
=P _[sin6]?, E=_P :,
2ne,y 2ne,y f
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Ques 5) Find expression for electric field intensity for
an infinite sheet charge having line charge density p,
C/m?.

Or

- Find expression for electric field intensity for an

infinite sheet charge.

Ans: Electric Ficld Intensity For An Infinite Sheet’

Charge
Consider an infinite sheet of charge in the y-z plane as

shown in figure 2.4 having a uniform charge of p; C/m?

(0]

% 0 A
A/{" Z+y2

X7 P
Figure 2.4

B

For easy analysis, divide the sheet into differential width
strips (dy).
pL=p;dy

The distance between the point P the line charge,
22 =X+ Y

Since the sheet lies in y-z plane the field components due
to y and z will be cancelled out at the point at which the

field is to be determined.

Only E, component is present and hence the field is a
function of x alone for an infinite sheet of charge on y-z
plane. Hence the electric field intensity due to an infinite

line charge is given as: .

E=-tL ,
2nep

P

Magnitude E, at point P due to an infinite differential
width strip (dy).

From the triangle OAP,
X

= —r
cos m

dE = ps—dycos 6;
2ne,z

Hence E, is given as:

dE, =—p‘d—yx X

2nez JxP+ y?
From — oo to + oo,
E, = [dE, =2 [

2, 2. X’ +y"
— Ps [an—ly = E =&
21t£n X| . : 280
T

Elcclromagnctics (TP Solved Series) KTy
If the field intensity i obtained at point P on the negative
axis, then E will be,

Ps

Eu = —

2¢,

x<0

In general, electric field intensity for an infinite sheet of

charge is given as,
E=2Ps 3
2¢,

a, i it vector normal to the sheet.
Where a, is aunit vec

The electric field intensity (E) points away fr.om [h.e
plane if p, is positive and towards the Plane if ps is
negative. The magnitude of the electric ﬁelq is a
constant; the magnitude is independent of the distance

from the infinite plane.

This is because no matter how far the point is frqm the
infinite sheet, the distance becomes incomparable W.l[h the
dimensions of the plane. Hence it seems the point is very

close to the infinite plane.

In a parallel plate capacitor the electric field intensity
between the two plates having equal and opposite charge
is given by:
E=feg +Poq)=Peg,
2e 2e £

The first —ve sign denotes —ve charges on one plate and the
second — ve sign denotes opposite direction.

Ques 6) Find expression for electric field intensity for
continuous volume charge distribution.

Ans: Field Intensity of a Volume Charge Distribution
Continuous distribution of charge in a region of
volume is specified by charge per unit volume which
is called volume charge density. Its unit is coulomb
per metre’ (C/m’), and it is generally denoted by the
symbol p.

If the charge distribution is not uniform, the volume
charge density,

Where, AQis charge contained in a volume
element Av . '

Referring to figure 2.5 let dv’ be a differential volume
centre at P’(x",y’,z’) within the charge distribution and

P (x,y,z) is the point at which the field intensity is
required.

If charge density at P’ is p(x’y’,z’), charge contained in the
differential volume,
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static Electric Field (Module 2)

Z Py Charge distribution in
a“)‘cgion of volume

<«——Volume
clement

"y
(x,y,2)
X dE
Figure .2.5: Field at P due to Charge in a
Differential Volume Element
dQ = p(x"y’,z')dv’
The displacement of P from P’ is:
R=r=r=(x-x) U+ (y-y)uy+ (z-2) u,
Thus, the field ’intcnsily at P due to the differential charge,
_p(Ly L Z)Hdy
dE= 3 (D
4R

The total field intensity is found by integrating equation (1)
over the region of charge,
x’9 : 9'2’ R ’
E=I _(p( Y i ) lv
v 4nR-

It may be noted that is not casy to evaluate the integral
even for uniform distribution of charge as it is a triple
integral and the integrand is a vector function.

Ques 7) Two large sheets of charge with densities ps,
and —ps; are located at x =0 and x = a, Find field
intensity in all the regions.

Ans: The directions of field due to the charge distributions
are as shown if figure 2.6.

+Psi —Ps2
£ E,, E,,
-
X
pa— —_ <
E; E, E;
' Infinite
*~~sheets of 7
x=0 charge x=a

Figure 2.6: Showing Directions of
Field Intensities Produced by Two
Parallel Sheets of Charge

1) Inthe regionx <0

E=E,-E =P_‘_=7:P—‘lu‘\!/m

2) Inthe region0<x<a

>+ Ps )
E=E,+E =B*_-,__&-'-ul\//m
2¢
3) Inthe regionx>a
E=E,-E, =P;l_;__EL2_u!V/n1

P

B-19

Ques 8) Explain the following:
1) Electric Flux
2) Electric Flux Density

Ans: Electric Flux
Electric ux is defined as the number of lines of force that
pass through a surface placed in the vector field.

Electric flux may also be described mathematically, as the
product of the surface area ds and the components of the

electric field E normal to the surface.

—

ie, o= E-ds

A unit charge is supposed to emanate one flux. Thus, in
case of an isolated charge q coulomb, the fTux is (¢ = q),
and is independent of the nature of the medium. In such a
case, the unit of flux is that ofcharge, i.e., coulomb.

The relation between Dand Eis,D =eEorD =g.¢ E.
Here, the flux density at any point in an electric field is
€€, limes the electric field at the point.

Electric Flux Density D

Electric flux density as the flux passing per unit area of a
section, held normal to the direction of the flux. :
Thus, if ¢ flux passes normally through an area Am?, the
flux density is:

flux _ ¢ Cm?

Area A

D=

Electric flux density is a vector quantity having both
magnitude and direction. The direction is that of the
clectric lines of force or flux.

Ques 9) Two parallel rectangular plates measuring
20cm by 40cm carry an electric charge of 0.2uC.
Calculate the electric flux density. If the plates are
spaced Smm apart and the voltage between them is
0.25kV, determine the electric field strength.

Ans: Given that

Area = 20cm x 40cm = 800cm® = 800 x 100”*m* and
charge Q =0.2uC =0.2x 10°C

Electric Flux Density
_Q_02x10° _o0.2x10*
A 800107 800x10°

2000

==——x10"°=2, 2
0 5uC/m

Voltage V = 0.25kV = 250V and plate spacing, d = Smm =
5% 107m.

Electric Field Strength
\Y 250
t=—= ,-_—-T = SOkV/m
d 5x10™

Scanned by CamScanner




B-20

Ques 10) A point charge of 2.0 nC is at he centre of a
sphere, as shown in figure 2.7, Find the flux crossing a
pa'!"t of the sphere defined by 30°< $< 60" and 0< ¢<
90

A

(r.0,0)
I's

-

dS = rzsin()d()dQu, '

’

change \

—> Y

3 (r, 90, 60°%)

(r, 90, 30°) '

Figure 2.7

Ans: Flux density on the surface of a sphere of radius r,
2x107°
D=——u, C
4mr”

A differential area in r direction,
dS = sin 6d6dou, m*
Flux through the surface is given by,

w=LD-dS=%)T;—9_[§fsin ededq;:énc

Ques 11) The linear charge density of an infinite line
charge located along the axis of a cylinder of radius r is
8 nC/m. The axis of the cylinder is the z axis of
cylindrical coordinates. Find the electric flux crossing a
part of the cylinder defined by (30°<¢ < 60°) and 0< z

< 3.6 m.

Ans: Flux density on the surface of the cylinder,

Differenfial area on the surface of the cylinder,
dS =rdddz u, .

part of the cylinder,

Flux
oelo s, [

-9
_ (ﬂ.J(&@(EJ:MnC
2n 6 ’

Ques 12) Give the statement of Gauss law and define

its value for integral and point form.
Or

State point form of gauss’s law.

crossing the given

e T R

plectromagnetics (T Solved Series) KTy

v (Maxwell's Equation)

Al L]
: ' Lavy ;
Ans: Gausy' [ Gauss' Tux theorem, styeg

Gauss' law, also known a5 , \
that the total electric displacement o1 electne flux througy,
s ‘ -

any closed surface surrounding l.h‘l;v"""“ 18 equal to the ney
y » / { MM
positive charge enclosed by that sut
Let's consider a point charge Q located in a homogencoys
isotropic medium of pcl'mitli\'il_\'. £, The clectric field
intensity at any point at a distance r from the charge wil|
D dal «

be as follows:

Q . v ()

a
dner® *

]}

And the electric flux density is given as,
~ . -
D=¢E= —Q—,ﬂr ..... 2)

4mr-
Now, the.electric flux through some clementory surface
area dS as shown in figure 2.8 is

dy=DdScos® ... )

Where, 6 is the angle between D and the normal to dS.

From figure 2.8, dS cos 6 is the projection of dS normal to
the radius vector. By definition of a solid angle,

Closed

surface

Figure 2.8: Determination of Net Electric Flux
through a Closed Surface

dScos®=rdQ@ ()

Where, dQ is the solid angle subtended at Q by the
elementary surface of area dS..

Thus. total displacement or flux through the entire surface
is

w=§dw=j§DdScos9=§Dr3dsz =2fuo
S 5 s ane
[Using equations (1), (2), (3) and (4)]

However, from the concept of calculus, ihe solid angle
subtended by any closed surface is 47 steradian. Hence,
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wotal dxfplm‘cmcm or flux passing through the entire

suffﬂcc 18,

y=fDds=Q= fpav L (5)
S

A
This is the integral form of Gauss” law.

_-\pp]).'il—lg (ji\‘crgcncc theorem in equation (5), we get
§DdS= [pav
g .

N \

= I(V-ﬁ)d\fjpdv

v

.. (6)

Equation (6) is the differential form or point form of
Gauss’ law.

Ques 13) Define the application of gauss law.

. Or
Find electric field density for infinite line charge using
gauss’s law.

Ans: Application of Gauss Law
The application of gauss law explained below;
1) Coulomb’s Law: Coulomb’s law can be derived from
Gauss’s law.
Consider electric field of single isolated positive charge
of magnitude q as shown below in the figure 2.9:
/" E

s Y4
& s
N

/ \):; \\
/ da A,
/ o \
| P |
1

O+q /

) Figure 2.9
Derivation of Coulomb’s Law from Gauss’s Law
Field of a positive charge is in radially outward
direction everywhere and magnitude of electric field
intensity is same for all points at a distance from the

charge.
We can assume Gaussian surface to be a sphere of
radius r enclosing the charge g.

From Gauss’s law
§Eda= Efda = Gene
€

Since E is constant at all points on the surface

therefore,

B-2I

y (
I s B
£,A
Surface area of the sphere is A =4nr
: 1 q
Thus. E=——%
dre, r°

Now force acting on point charge q at distance r from

point charge q is:

F=q'E
l ’
pa— 3
dne, -

This is nothing but the mathematical statement of

Coulomb’s law.

Electric Field Due to Infinite Line Charge:
Consider a long thin uniformly charged wire and find
the electric field intensity due to the wire at any point
at perpendicular distance from the wire.

If the wire is very long and at point far away from

both its ends then field lines outside the wire are
radial and would lie on a plane perpendicular to the

wire.

Electric field intensity have same magnitude at all
points which are at same distance from the line

charge.

We can assume Gaussian surface to be a right circular
cylinder of radius r and length ( with its ends
perpendicular to the wire as shown below in the

Figure 2.10:
IE ‘ g- Gaussian surface

0

+ + + + + + + + + + +
[P

< >

!

Figure 2.10: Cylindrical Gaussian Surface for
Calculation of Electric Field Due to Line Charge

A is the charge per unit length on the wire. Direction
of E is pérpendicular to the wire and components of E
normal to end faces of cylinder makes no contribution:
to electric flux. Thus from Gauss’s law ‘

JEda = de
€
Now consider left hand side of Gauss’s law

§E.da = E§da

Since at all points on the curved surface E is constant.
Surface area of cylinder of radius r and length LisA=

2nr( therefore,
§E.da = EQ2ml)

— T
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Charge enclosed in cylinder q = Lincar charge density
x Length of cylinder, or q = po

From Gauss’s law

=9
§E.da =

o

or, EQ2nrl) = pe

€g
= E= P
27re,
= EocR
r

Thus electric field intensity of a long positively
charged wire does not depends on length of the

wire but on the radial distance r of points from the
wire.

Ques 14) Describe electric potential for a point charge.

Ans: Electric Potential

Electric Potential at a point due to a fixed charge is
defined as the work done in bringing one coulomb of
charge from infinity to the point against the force created

by the fixed charge, i.e., the potential is the work done per
unit charge.

The potentizﬂ, V at a point due to a fixed charge, Q; is
given by,

Work doneto bring acharge,

Ve Qfrom ~tothe pointtowards Q,

Q

!J/C or volt

Work Done
Simply V=—n——"-—

The potential at a point due to a point charge is given by,
V= Q
4me,r

Ques 15) What do you mean by the potential gradieflt?

Ans: Potential Gradient
Consider an electric field Edue to a positive charge
placed at the origin of a sphere. Then,
- - Q
V=-[E-dL=
4megr

The potential decreases as distance of point from the
charge increases. This is shown in the figure 2.11.

V. plectromagnetics (TP Solved Series) KTy
A

O —1 AL :4"

Figure 2.11: Potential Gradient

=
It is known that the line integral of E between the two
points gives a potential difference between the two points.
For an elementary length AL we can write,

- -
'.-VAB =AV=-E-AL

Hence an inverse relation namely the change of potential

AV, along the elementary length AL must be related to E,
as AL — 0.

The rate of change of potential with respect to the distance
is called the potential gradient.
dv

—=lim i) = Potential gradient
dL aL-o0 AL

Potential gradient is nothing but the slope of the graph of

potential against distance at a point where elementary
length is considered.

Ques 16) Prove the electric field vector E = (grad v),
where v is a scalar potential field.

Ans: Electric Field Equal to Gradient of Potential

The electric potential is a scalar function for the
description of the electrostatic field. It is equal to the work
done by the electric field in'moving a small charge from

an arbitrary point A in the field to a “reference” point, .R,
per unit charge:

R
Vi =], E-de (Volis - V)

(1)
From equation (1) combined with the law of conservation
of energy,
§E-dr=0

(2)

The basic expression for the potential

V(r) =

e (Reference point at infinity) V .....(3)

ol

’I:he potential of a given distribution of volume, surface or
line charges at a point P of the field,

1 ed
Vp = [ =y
411:60 vV r
e S GO, g b A Y T s

E———

P
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V. = 1 ods

P m——

4756(, S

l Q¢
V = (
" dne, J.x, r o)

The potential diffc‘rcncc or voltage in the electrostatic field
is defined as field is defined as:

B
Van =Va=Vy=[ E-d(V ...5)
=> Hence from equation (5)

The elcctric.ﬁcld strength is obtained from the clectric
scalar potential as:

=z-gradV= VYV
In rectangular form,
ov Jdv v
E=-gradV=-V.V=—o —V 4y 4V
ax oy y+aZVL V/m

Ques 17) Discuss the electric dipole for the point
charges.

Ans: Electric Dipole
Two equal and opposite point charge separated by a
distance, which is small compared to the distance at which

the potential or the field is to be calculated, constitute an
electric dipole.

Figure 2.12 show an electric dipole with +q and —q charge
separated by a distance d.

y
A - y
P(f, 6' ¢) 'YE+
N A 4 ﬁ+ PN
a N
d21 Apt I :

an pej{ | yrv/

(a) (b)

(c)

Figure 2.12 (a) Electric Dipole, (b) Field Lines for an Electric
Dipole, and (c) Field Lines for a Pure Electric Dipole

Let us compute the electric field intensity at point P. By
evaluating the negative gradient of a scalar potential V in
Spherical coordinates,

P

[2cos6a, + sinBag] .....(1)
4me r

3

However,

2cos 0, +sin 0idy = 3cosO4d, — (cos0d, —sinOdy)
=3cos0fl, -2, )
Thus, the electric field intensity at point P is given as,

s 3@ -r'p
o 4me,r’

low!

..... 3)

The electric field intensity falls off as the inverse cube of
the distance. In the bisecting plane, 0 = £n/2, the field
lines are directed along @, = —a,. Thatis,

E=—2P for0=1tm2 @)

dre,

However, when 0 = 0 or T, the field lines are parallel to
the dipole moment p.

The concept of an electric dipole is very useful in
explaining the behaviour of an insulting (dielectric)
material when it is placed in an electric field. Therefore, a
formal definition is in order. ’

An clectric dipole is defined as two charge of equal
strength but of opposite polarity but separated by a small
distance. Associated with each dipole is a vector called the
dipole moment.

If q is the magnitude of each charge and d is the distance
vector from the negative to the positive charge, then the

dipole moment is p = qd.

Ques 18) Discuss the equipotential surface? Also draw
the equipotential surfaces due to an electric dipole.

Locate the points where the potential due to the dipole
is zero.

Ans: Equipotential Surfaces

An cquipotential surface is a surface with a constant value
of potential at all points on the surface. For a single charge
q, the potential is given by,

V= 2 4
4Ae, 1

This shows that V is a constant if r is constant. Thus,
equipotential surfaces of a single point charge are
concentric spherical surfaces centre at the charge.

No work is done in moving from one point to another in
equipotential surface.

An equipotential surface (or simply an equipotential) is a
surface that joints points of equal potential.

Since along an equipotential surface AV = 0, we conclude
Wea = gAV = 0. This means that no work is done in
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moving a charge from one point to another along an
equipotential surface.

For a point charge q. electric potential V = (1/4ne,)(g/r).
Thus. for a given r. V is the same, and the equipotential
surfaces are spherical surfaces centred on the charge

(figure 2.13[a]).

Electric field lines created by any system of charges are
always perpendicular to the associated equipotentials
(figure 2.13). This must be so, because if the field at any
point had a component parzllel to the equipotential surface
through that point. it would require work W, (20) to move
a test charge g along a constant potential surface (AV = 0),
which is not true.

: L

o :

'

< -

(a)

(b)

W

T

(c)
Figure 2.13: Equipotential Surfaces and Field Lines for
(a) Point Charge, (b) Uniform Electric Field, and
(c) Electric Dipole

Electric potential is zero at all points in the plane passing
through the dipole equator.

Ques 19) What do you mean by capacitance?

Ans: Capacitance

Capacitors consists of two parallel conductive plates
(usuzlly a metal) which are prevented from touching each
other (separated) by an insulating material called the

“*dielectric”".

When a voltage is applied to these plates an electrical
current flows charging up one plate with a positive charge
with respect to the supply voltage and the other plate with
an equal and opposite negative charge. :

Then. a capacitor has the ability of being able to store an
electrical charge Q (units in Coulombs) of electrons. When

Elcétromugnctics (TP Solved Serics) KTy

. y here is a potential difference
a capacitor is fully charged t |
a ;dp};ig:‘[::c: its p)llalcs, and the larger the arca of the plateg
irl)r'ul‘/,or the smaller the distancc between them (known' "
separation) .(hc greater will be the charge that the capacitor

can hold and the greater will be its capacitance.

e this electrical charge (Q)

The capacitors ability to stor al ck
betweerr: its plates is propomonal 1o the applied voltage, v

for a capacitor of known capacitance in Farads: Note the
capacitance C is always positive and never negative.

ed voltage the greater will be the
lates of the capacitor. The smaller
smaller the charge, therefore, the
lates of the capacitor and can be

The greater the appli
charge stored on the p
the applied voltage the
actual charge Q on the p

calculated as:
Charge on a capacitor, Q = C x v

Where, Q (Charge in Coulombs) = C (Capacitance in

" Farads) x V (Voltage, in Volts)

Ques 20) Derive the expressions of capacitance for a

coaxial cable.

Ans: Capacitance of Coaxial Cable

Let p; and p, be the radii of the inner and outer conductors
of the coaxial cable. Let p; be the line charge density on
the inner conductor and —p,_ be that on the outer conductor.
Then the electric field in the radial direction is

PL
E=———a
2nep P P2
+
! 1
1
1
'
€ 1: 0
1
1

@2

Figure 2.14: Coaxial Cable
The potential difference between the cylinders is

Py pL
2nep

Py
V= —IE.dpa = ap . dpap
P2

o ==
253

or, V==L |/ P2
2ne P,

BL = 7€ Furad
v arads/m)

3

©

C=

Scanned by CamScanner



LA SRR T, L %
. -

Static Electric Fiel( (Module 2)

The capacitance of
2re ¢
C=

7 (Farad)
ln[pA]
P

Ques 21) Dcs'lv.e the expressions of capacitance for two
wire transmission line,

acable of length Cmetres js

Ans: Capacitance of Two Wire Transmission Line

Let pg and —PL be the line charge densities of the lines A
aqd respectively. .Lct d be the distance between the
wires and r be the radius of each wire.

p_L -pL
]
I
A l d ‘I B
P E——.
L | |-
[ X T a-x 1

Figure 2.15: Two Wire Transmission Lines

Electric ficld between the wires at the point P due to py, is

_PL
E,=———a .
2 2rex
Electric field at P due to —PL is i
E,=+—FL —a
2ne (d—x)

The potential difference, V

\' =—TE.dxax = jE.dxux
B

(d-n
r : p
=_J‘ P a dxa, - J' ——L a .dxa,
(dor) 2TCE X (dory 2TE (d-x)

= | PL_gx— | _ P 4y
@ 2MEX (L 2ME (d=x)

r r
=P J' -ldx+ J —L—dx
2ne| gy X (d_,,(d—x)

S (N PP ﬂ
Zne_ln(d—r) d-r

=p_'~21n(9:_r.]

r

o VRN FERRR N AR A

B-25

That is,
V= ,pL In ((_l :-.Q
ne r

(d=r) d

In all practical cases, d >>r. As a result

me r

The capacitance,

c=PLp/m
;

r r
So,

ne
C = ———Farad/m
- (d
In| —
r
Or capacitance of a pair of wires of length 0 metres is,

therefore, given by

C= ﬂ- Farad

0

Ques 22) Define the Poisson and Laplace equation.
Also write the Laplace equation in each coordinate
system.

Ans: Poisson’s and Laplace’s Equations
The electric field is related to the charge density by the
divergence relationship
V.E- P Ef ellqc'ctric ﬁe]c'l
£ p = charge density
° g, = permittivity

and the electric field is related to the electric potential by a
gradient relationship
E=-VV

Therefore the potential is related to the charge density by .
Poisson’s equation,

V.vv=viv=_P
£

(¢}

In a charge-free region of space, this becomes Laplace’s
equation,
ViV =0

This mathematical operation, the divergence of the
gradient of a function, is called the Laplacian. The
Laplace’s equation in Cartesian, cylindrical, and
spherical coordinates respectively is expressed as,

V=
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vy = _‘7_(,,9! PRI AL JB e
p ()p ap p a¢z (}7,7
V2V=--l—-9-(r2 QXJJr*-*]""“*Q"
2 or Ir ) rsing 90
..(3)

2
(sin 09—\—,) .;.__z_lz_a i sf)
20 ) rsin? 0 0¢?

Ques 23) Using Laplace’s equation, obtain the potential
distribution  between  two  spherical  conductors
separated by a single dielectric. The inner spherical
conductor of radius, a is at a potential, V, and the
outer conductor of radius, b is at potential zero. Also,
find variation of E.

Ans: The Laplace’s equation in spherical coordinates is

Vz\’/=i2-[r2 ()—V}+ ! g [sin Ga—\f-J+

r? or Jar rsin 0 20 J0
1 9%V

2 7Taz -V

resin” 0 do ok

Figure 116

Since potential, V is a function of only r, the above
cquation reduces to
1 0| ,0V

rP—|=0

Por| or

) I
Since — # 0, we get
2

2I:rzil—]=0
Jr or-

Integrating with respect to r, we get

magnetics (TP Solved Series) KTU

Electro:
we get
Again integrating with respectto T, £
V:—E—’-+K2 -1

r
where K ‘m(; K, are the two constants of integration
> Ky d —
evaluated using suitable boundary conditions
Boundary conditions:
1) Whenr=2a, V= Yy and
2) Whenr=b, V=0

Making use of boundary condition in equation (1), we get

Substituting boundary condition (2) in equation (2), we get

O=—'EI—+K2 ..(3)
b
Solving equations (2) and (3), we get
b
Kl = '_vo 2
(b—a)
: K -V a
K,=—L=——®
b (b-a)
Hence,
_ V,ab  Va
(b—a)r (b-—a)
The relationship between E and V is
E=-VV
oV 10V 1 oV
= E=— ar-i——_a 4—-—27
l:af rod ° rsin@ od q{,

Since V is a function of r only, the above equation reduces

E:_a_va _ a[ V,ab Vi .
(b—a)r (b—a)| "

o ' or
Vy,ab .

A%
Hence, E = —“ab > (V/m).

(b—a)r

Ques 24) Given the electric potential field,
V=[Ap*+Bp~™]sin 4¢ (V).

1) Show that V*’V =0 in cylindrical coordinates.

2) Select the values of a and b so that V = 100 (V) and
IEl = 500 (V/m) at P(1,22.5°,2).

Ans:
2 2
1) Vzvzlil:pa‘v.}*.Lav_g_ﬂ
popl dp] p? 39> 9z’
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) ﬁ%[PMAp" ~4Bp~*)sind¢]- = —[4np? ~ 4Bp™ hindga,, -

1 4 | - l[Ap4 +Bp™* ]x4cos 4ta,
F[Ap +Bp™ [x16sin 49 +0 p

1[ . — E(l,22.5°2) = - (4A — 4B)a, — 0 ay
=—[16p°A +16Bp~Bind¢ - = |El == [4A —4B] = 500

P

1 ' = 4A - 4B =+ 500

3 [Ap“ +Bp™ [x165in 40
P Also, V=100 (V)atP(l,?22.5°2)

=0

= A+B=100

1

Solving, we get,

2) B=-V¥ A=1125and B=-125
.=—a—Va —lav av Ol‘ .
PP papt A=-125and B = 112.5 , 1
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Module 3

Static Magnetic Field

Ques 1) What is a magneto static field? Gives its
application.

Ans: Magneto Static Field

Static electric fields are characterised by E or D. Static

magnetic fields are characterised by H or B. There are
similarities and dissimilarities between electric and
magnetic fields. As E and D are related according to D
=¢E for linear material space and H and B are related
according to B = pH.

An electrostatic field is produced by static or stationary
charges. If the charges are moving with constant velocity,
a static magnetic (or magneto static) field is produced. A
magneto static field is produced by a constant current flow
(or direct current). This current flow may be due to
magnetisation currents as in permanent magnets, electron-
beam currents as in vacuum tubes, or conduction currents
as in current-carrying wires.

The development of the motors, transformers,
microphones, compasses, telephone bell ringers, television
focusing controls, advertising displays, magnctically
levitated high speed vehicles, memory stores, magnetic
separators, and so on, involve magnetic phenomena and
play an important role in our everyday life.

There are two major laws governing magneto static fields:
1) Biot-Savart’s law, and
2) Ampere’s circuit law.

Application of Magneto Static Field
The applications of magneto static field are as follows:
1) Magnetic separators

2) Particle accelerators like cyclotrons
3) Development of motors

4) Compasses

5) Microphones

6) Telephone ringers

7) Advertising displays

8) Velocity selector

9) Mass spectrometer

10) Transformers

11) Television focus controls

12) High speed velocity devices

13) Magnetohydrodynamic generator

Ques 2) State and explain Biot-savart’s law.
Or

‘v . avart?ae | /
State and explain Biot-savart’s law.

Ans: Biot-Savart’s Law ‘ JERLIE
It states that, “The magnetic flux density of which dB, is

directly proportional to the length of the element dl, the

current I, the sine of the angle and 0 between direction of
the current and the vector joining a given point of the ficld
and the current element and is inversely proportional to the
square of the distance of the given point from the current
element, r.”
Id(sin® . 1d(sind
———— or dB=k——

2 2

Hence, dBe<

Where, k is a constant, depends upon the magnetic
properties of the medium and system of the units
employed. In SI system of unit,

(\"l r

R

ar .

Therefore, final Biot-Savart law is:

{si1
dB = }lnpr_x Id \71 16
47 I~

Ques 3) Derive magnetic field intensity due to infinitely
long wire carrying current 1.

Ans: Magnetic Field Intensity Due to Infinitely Long
Wire Carrying Current 1

Let us consider a long wire carrying a current I and also
consider a point P in the space. The wire is presented in
the figure 3.1 below, by solid bold lines.

Let us also consider an infinitely small length of the wire
d( at a distance r from the point P as shown. Here, ris a
distance vector which makes an angle 0 with the direction
of current in the infinitesimal portion of the wire.

Figure 3.1
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I visnalises the Comdit
““1 “‘m‘n!wlu‘ tield density at the point P due
whoattesial - denpeh q( of the
proportional 1o curpe
Wire,

N one can easthy understand

o that
wie s directly
N carned by this portion of the

As the current hrough
same as the current ¢
can write;

at mbitesimal length of wire is
Aried by the whole' wire itself, we

dB w1

_l l‘f magnedte field density at tha point P due to that

mhmu\\lm\.\l‘lcng(h dof wire iy inversely propottional to
8 O ” . 2 Oy} . . y

the square of t‘h( stratght distance from point P to centre of

dl. I\hxtlmm:mcall}'. wWritten as:

1
dB‘\—l-:— i)

Magnetic field density at that point P due to that
infinitesimal portion of wire is also directly proportional to

the actual length of the infinitesimal length d{ of wire.

As 0 be the angle between distance vector r and direction
of current through this infinitesimal portion of the wire,
the component of d( directly facing perpendicular to the
point P is d(sin0;

dB e« d( sin 8§ ()

Now, combining these three statements. we can write;

\

4B o I-d¢ ':sme

r
This is the basic form of Biot-Savart’s Law.

Thus. in terms of the distributed current sources, the Bio-
Savart law as becomes:

Id(xay
H=| R

(Line current) *

(Surface current)

KdSxag
H —_-J' b it X
S 4nR-
H= " Eg‘__\_‘f_'\. (Volume current)
vod4nR-

Ques 4) Derive magnetic field intensity due te finite
long wire carrying current L

Ans: Magnetic Field due to a Straight Current
Carrying Conductor of Finite Length _ .
Suppose AB is straight conductor carryng a current of
I and magnetic field intensity is to be determined at
point P. )

— R S

B.20

Figure 3,2

According to Biot-Savart law the magnetic field at P,
— U, IdIxt
i ¢

Angle between Tdland T is (180 - 8) so:
B = Lo 1lsin(150-6)

4 r-
dB = }_IQM (D
4o
Now. EG=EF sin 0
=dlsin®
and EG = EP sin do = rsin do
=rdd
So.dlsin 8 =rdd <)
So from equation (1),
1, 1do
dp=He 9 e
4T v
From A EQP, r=
cosd
1, lcos

4t R

Then the total magnetic field at point P due to the entire
conductor s,

0s
L, 1
B =:L[xi—;‘tEcos¢d¢

LT R
= -T;E [sin ¢]‘_-¢l

Mo 1., . C e
B =——(SIn + SIN O, e D)
AT R (si O, +sir ¢.) (
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For any conductor of infinite length; ¢, = ¢; = 90’

So, B :_}1_02
4t R

B = ol yp-ip-
2nR

The direction of magnetic field due to a current carrying
conductor can be obtained by using any of the laws like:

1) Right hand palm rule number 1, :

2) Right hand thumb rule, or

3) Maxwell right-hand screw rule.

Ques 5) What is amperes force law? Derive the
expression for amperes force law.

Ans: Ampere’s Force Law
Ampere's Force Law describes the force between

conductors that are carrying current. For this Law, let
consider the two conductors parallel to one another so that
the force is maximum. While this is not “‘gencral”, most of
our magnetic systems involve conductors that are arranged

for maximum force.
A 4on

|

Figure 3.3: Ampere’s Force Law

Figure 3.3 <hows the basic structure. The conductor on the
left is carrying a current, flowing upward, of I, amperes.
The conductor is infinite in both direction, which is
impractical, but as long as the loop is closed “a long way

away.” “infinite”™ is OK.

The Ampere’s force law gives the magnetic force that
evists between two current-carrying current  loops.
Another version of this law gives the force between the
current elements of the different current loops. Both the
version of this law are derivable from the Lorentz force

law.

When two current loops are oriented in such a way that
the ficld produced by one loop links with the other then
cach loop will be acted upon by an electromagnetic
force. Let us derive expressions for the electromagnetic
force between two filamentary locops separated by a
finite distance in a homogeneous medium of
permeability (it). The loops denoted by C; and C; in
figure 3.4 carry currents I; and 1. respectively in the
same sense.

Elcctmr'mngncticu (TP Solved Series) KTU

3.4: For Calculation of Force
. 0 Current-Carrying Loops

ate force cxpcricnccd by one If)np (‘JUc
d of the other loop, we at first find
rent clement of a loop and then
Joop. Let us take a current

element I,d€, at point Py on loop C, ﬂfjlflh fl :;'ll.:fcn't:
element Ld(, at point Py on loop C. c I.idnu,
between P, and P, is taken as R. Let the flux density at

P, due to I;d(, be dBy.

Figure
hetween Tw

In order to calcul
to the magnetic ficl
the force on a cur
integrate it around the

Then according to Biot-Savart law,

ul,
dB, = —(d{, xuy;)
VR !

Where, u,; is a unit vector directed from P, to P,.

Hence, flux density at P; due to the total current in C,is
given by

|

Bl :f } |

C 4nR

T (df xuy,)

The flux density will cause a force dF, on the current
clement 1,d(;. The force as per formula is:
dE, =1,(d7, xB))
uhiI, |
=—=(dl, X9 ——(df, xu el
an 2 f(-‘l 4KR"( 1 [2) (n

Total force on loop C; is obtained by integrating equation
(1) around the loop. Thus force on the loop,

ul I, 1
F‘:; df‘ —— d,‘ \
: £v [f, 4nR:( l)(ulz)

4in
uLl, I
s —[df %
4r ££ 4nR! [d zx(d'.yu,,)] ..(2)

The fqrcc Fy on loop C, is obtained by integrating the
subscripts | and 2 in the expression of equation (2). Thus,
F

_uLl I
T 4z fcyfc: 4nRz[d/,ZX(d{2xu,2)],_,,,(3)

Equation (2) or (3) is known as Ampere’s force law. The
electromagnetic force is proportional to the product of
current magnitudes and permeability of the medium. It
also depends on size and shape of the loops and distance
between them. .
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Ques 6) A rectangular loop of length @ and width w

carries 3 steady curpent I. The loop is then placed near
an mﬁmt}elqy long wire carrying a current I, as shown
is figure 3.5. What is the magnetic force exp;rien;*ed by
the loop due to the Mmagnetic field of the wire? '

Q\O\»
N— T

L —
Figure 3.5: Magnetic Forces on a Current Loop

f\ns. The forces are shoym in figure 3.6. The magnetic
induction due to the infinitely long wire is,

5

a

¢

[R8)
g

w

I
— . 7]
a

Figure 3.6: Magnetic Forces on the Loop and the Wire

The force on the loop is given as:
F=F +F,+F +F,

ol v R — T 1o uI:‘ _l‘ull:£*

Here, _I,Idc,xB:_I,Ldza,xzm 8 =St
(Repulsive)

l _
- - o S Ll PN ML L
E=1[d:xB,= I,z :[0 dz, x2 24, e ot
(Attractive)
= - = PO || CP U1 01 CLETp

FZ :IlJ.d[’Z )(B2 = Il Id.rarx—z—m—a@ ——Fln\xaz
(Parallel)

dé,x B Od“ sl 5 ———m'lllnwﬁ
F4—I|JldCZXBZ = 1 :[ rar 21‘['( $= 2]"[ z
(Parallel)

Thus, the total force on the loop is

o = f Lf .
I L L

2na ' 2mla+w)

Ques 7) Derive the magnetic field intensity on the axis
of a circular loop carrying current L.

Ans: Magnetic Field Intensity on the Axis of a Circular
Loop

Consider a circular conducting coil of radius ‘2" carrying
current i. The loop lies on vz plane and its axis lies on x
axis. Let us derive field at point P at a distance x from the
centre. Consider a small element at dl on the coil.

dB Cos8 dB

dl @+

dB sin8
=3

dB smn8

dB Cosf aB

_ U, idlsing
iz (a* +27)

dB

Figure 3.7
As the loop lies perpendicular to the plane of paper and
vector T in the plane of paper, hence angle ¢ between dl
and T is 90°
-.dp=—Hodl

4;1(&2 + x:)

Magnetic field dBcan be resolved into two components
one dBsin® parallel to the axis of the loop and other
dBcos8 perpendicular to the axis.

From the symmetry of the system it can be seen that
diametrically opposite elements contribute to cancel the

perpendicular components whereas parallel components
are added up.

B =/dB sin®
Thus,
¢ U, idl |
B=¢—"— 0

From the diagram we can observe:

= \/(az +x*andsin@ = a/\/(az +x2

B gMe - idl a

4r (a® +x1)(a: ek
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B= Myia

2)

2ma
5 32 <
47t(a‘ + x')

A=Kaz \
_Ke  2iA )

For coil with N turns: o

_ p=to 2NiA

4r ('1: +X2)1/2 4

; 2b, =

We have magnetic dipole moment of coil; Figure 3.8: Rectangular Current Loop on the x-
M = Nia y Plane

- 4 (az + xz)?/l The minus sign is used because I and dx are in opposite
dircctions.

B-32 [ilectromagnetics (TP Solved Series) KTy
B= Moia © jﬁdl Idl = ~Idxu,, P0,0,h)
2 ) V2 :
41r(a" + x') .
I As we know area of circular coil is:

Ques 8) The mean radius of a circular coil of 50
turns of fine wire is 8.0 em, It carries a current of
3.0 A. The coil is located on the y-z plane in air.
Find the magnetic field intensity vector at P(20

Referring to the figure 3.8, displacement of P from P, is:

R} =—xu, —buy + hu,

em:0,0). Flux density at P due to the current element,
Ans: Number of turn, N =50 dB, = —“—I]((MXR,)= __u - [dxul x(— Xu, —bu, +hul)]
Radius of the coil, a = 0.08 m 47R, A
Current, [=3.0 A Idx
= 4“ 7 (huy +buz)
Distance of P from the centre of the coil, h = 0.2m R,
Flux density, Where, R®=(x*+b> +h2)¥2
o(NI)? 4nx107 [50x3)0.08)* .
B= ’)F:( )za)]/: . = ( ( ,X z()vz ) u, It can similarly be shown that the flux density at P due
2la’ +h 2(0.08% +0.2 to the current element at P5(x, -b, 0) on side 3 is given
=603.49%107u T by,
‘ _ uldx ( h )
Ques 9) Derive the magnetic field intensity on the 4R u, +bu,
axis of a rectangular loop carrying current L. .
Ans: Rectangular Current Loop Where, R; =R,
A rectangular loop with side length 2a and 2b, and .
carrying I, as illustrated in figure 3.8. The flux density on The sum of dB, and dBj which we well denote by dB},3),
the axis of the loop using the vector from of Biot-Savart =
law using rectangular coordinates can be calculated. dB, )= HbIdx u
] N
3 2R}
, k) The loop is taken on the x-y plane with its sides parallel to
p x and y axes. The centre of the loop is at the origin. Point Th .
- . s, the total fi i
P at which we wish to find the field is taken at a height h U i toral 1ell()ildue o currents in sides | and 3,
from the plane of the loop. Thus, the coordinates of P are B(m) = uzj'a Lde
: 0,0,h). ’ ~*2mR;
} .
L
Now let us take a-differential length on side 1 at P,. The pabl
: 4 coordinates of P, are (x, b, 0). A differential current = #uz ee(1)
P" element vector at P, is ' Tf(b' +h m
l’:;:’ i
k&'ﬂ F o R ECeenne - = M~ ———
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Static Magnetic Fjelq Modyle 3

Similarly, it can be

Al sh ;
currents in sides 2 g 4Own that flux density 4 p due to

B(2+4) =W
n(b +‘h2)‘/mul (2)

The flux densit

YBont . )
plane of the loop is o u};e] axis and at g height h from the
2), Aual to the sum of equation (1) any

Thus,

B = Habl ( 1
== (1
mal+b? 4 p2\alop2 T

If the loop has N umns, the fluy 4

1
m)uz «.(3)

ensity is given by,
B MNabI ( I I
_-——"\—.‘\_\ ‘,—-\’-F*‘\_‘ u, ..
Wa” +b” + K% a4+ 42 b‘+h‘) Fis)

By substituting h = 0 equations (3)
obtain the flux density at the centre of
by,

UNIVa? 4+ p?

- —/———u

nab .

and (4), we will
the loop. It is given

B(h=0)= ~{5)

The fields are along the axial dire

ction. It may be noted
that the side length of the rectang

ular loop are 2a and 2b.

Ques 10) What is magnetic vector potential? Derive the
relation between scalar potential and vector potential.

Ans: Magnetic Vector Potential

Divergence of the curl of any vector field is wdentically
7cro, e,

VAVXA)=0for any vector field A ek )

Because the fourth of Maxwell’s equations states that Bis
solenoid, as given by (V-B=0),we can thus assume that
Bmay be written in terms of another vector ficld, A, that
we will call the magnetic vector potential.
VA (2)

B=V x A

Note: From equation (1) that. given 2 ma::nc:‘xc flux
density. B . there we will be an infinite number of vector
fields,

- v equation (2 IS means
constant to A will also satisfy equation (). This means

dd;
A . that can satisfy the identity, e.g.. adding a

that, to specify a unique definition of the vector ﬁc_id. A,
i o y make an additional restriction on A. The
we will need to ni "

a cauge and it i1s arbitrary
additional restriction is called a gauge and it is arbitras

Y.

. Ao’

day’s
b st : (2) into Farada
Substituting equation

law (V x E = -aB / &), we can write,

VxE = -a(VxA)/at

or, VX(E+A/at) =0 ..(3)

Since, VX (-VV) = ) for any scalar field. Thus, because the
curl of the vector field shown in parenthesis in equation
(3) is zero (ie., it is irrotational), then that field can be

written as the negative gradient of another scalar field, v,
that we will call the electric scalar potential.

e}

+0A/dt=-Vy

ool

or, =-VV-3A/at .(4)

Note: From equation (4) that the electric field intensity, E

can be written in terms of the electric scalar potential, V,

and the magnetic vector potential,

IWo potentials are unique, the elect
also be unique.

A. As long as these
ric field intensity will

In the special case of static (time-independent) fields and
potentials, dA/dt =0,and we can see that e

quation (4)
reduces to E = -VV . )
Ques 11) Explain

magnetic  flux  density/Maxwell
equation. :

Ans: Magnetic Flux Density-Maxwell equation
The magnetic flux density B is similar to the elecrtic flux

density D. Therefore. the magnetic flux density B is
related to the magnetic field intensity H

B=yu.H
Where, j1, is a constant and is known as

of free space. Its unit is
value,

the permeability
Henry/meter (H/m) and has the

M, =47 % 10 'H/m
The magnetic flux through a surface S is given by,
v=[B-ds
S

Where the magnetic flux v is in webers (Wb) and the
magnetic flux density is in weber/square meter or Teslas.

Magnetic flux hines

Magnetic flux lines due to a straight wire with current

coming out of the page. Each magnetic flux line is cloTCd
with no beginning and no end and are also not crossing
each other. In an electrostatic field, the flux passing
through a2 closed surface is the same as the charge
enclosed.
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Thus it is possible to have an isolated electric charge. Also
the electric flux lines are not necessarily closed.
Magnetic flux lines are always close upon themselves.

Closed Surface, y=0

e —
&3

So it is not possible to have an isolated magnetic pole (or
magnetic charges).An isolated magnetic charge does not
exist. Thus the total flux through a closed surface in a
magnetic field must be zero.

§B-d5=0

This equation is known as the law of conservation of
magnetic flux or Gauss's Law for magneto static fields.

Magneto static field is not conservative but magnetic flux
is conserved.

B-34
| y=§D-ds=Q
Closed surface, ¥ =Q
(N -
A
i
3

Applying Divergence theorem, we get,

§B-dS=§V-Bdv=0
Or V-B=0

This is Maxwell’s fourth equation.

This equation suggests that magneto static fields -have no
source or sinks. Also magnetic flux lines are always
continuous.

Ques 12) Solve the following:

- 2.39x10°
a) A radial field, Hzﬂcosmar A/m exists
r

in free space. Find magnetic flux ¢ crossing the
surface defined by -/4<¢<n/4, 0< z< 1m.

b) Compute the total magnetic flux ¢ crossing the z =
0 plane in cylindrical coordinates for r<§x10~m if,

—

02 ., .,
B =—sin’pa_(T).
- .

Ans:
- - 6
a) H="'39ﬁxlocos<{)€1r
r

El yromagnetics (TP Solved Series) KT1;
. c_c >
Magnetic flux crossing the given surface is given as;
~ Magneuc - —
o= [B-a5=[u,H 4

1ox (2_39110‘ ", cos b f,(rd"ﬂl«"ﬂ.)

-[ [l J

.l[:erzmxl 07 % rcosododz
0-x/4 r
1=/4
:IJ‘ 3C05¢dodz
0-=/4

=3[sino), . = 32 =4.24Wb

b) B=_Zsin0d,

r C. -
i v 2 'en as:
Magnetic flux crossing the given surface 1s given
54107 2z 02 . \ i
g frpeme - — - 2 -~ ‘ a
o= fB.dS= j L(Tsm Oa,j(rdrdo ,)

0 o>

‘o

z

=02 f i‘zsin:(f)drdc'):O.ZxSx": 'fsin: do

- ’

0

107%[r-0]=3.14x10">Wb

Ques 13) Define Ampere’s current law/Maxwell’s
equation for time varying field.

Or
State Ampere’s circuital Law. Also prove that the

integral H-dL along the closed path gives the direct
current enclosed by that closed path.

Ans: Ampere’s Circuital/ Ampere’s Current Law-
Maxwell’s equation

Ampere’s circuital law in magnetism is analogous to
gauss’s law in electrostatics. This law is also used to
c_alculate the magnetic field due to any given current
distribution. This law states that “The line integral of
resultant magnetic field along a closed plane curve i: equal
to o time the total current crossing the area bounded by

the c!osed curve provided the electric field inside the loop
remains constant”,

Thus, §B.d[=p.(,lm e (1)
B —

:f;;-d[-l

:fﬁ-a=l

Il

ot
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static Magnetic Field (Modyle 3)

Where, Ho is the permeability of fre
net current enclosed by (heyloop e space and |
Figure 3.9.

enc 18 the
as shown below in the

Amperean loop

I I

-

I~ Direction of
Integration

Figure 3.9: Ampere’s law Applied to a Loop Containing Two
Long Straight Wires

Consider a long straight conductor carrying direct current I
placed along z-axis as shown in the Figure 3.10. Consider
a closed circular path of radius r which encloses the
straight conductor carrying direct current I. The point P is
at a perpendicular distance r from the conductor. Consider

dLat point P which is in @, direction, tangential to

circular path at point P.
dL =rd¢a, )

Figure 3.10

While H obtained at point P, from Biot-Savart law due to
infinitely long conductor is;

H=-1135, )

Ty
SRt onon (s RS

Integrating H - dL over the entire closed path,

. I I 127
: = | —db=— =—
fH-dL | 5o 2n[¢lu o

= [ = Current carried by conductor

This proves that the integral H-dL along the closed path

gives the direct current encloséd by that closed path.

Ques 14) Give the applications of ampere’s law.

Ans: Application of Ampere’s Law

Ampere’s law is frequently used for evaluating Hor B
by forming a suitable path known as Amperian path
around the current. The Amperian path should either be
parallel or perpendicular to field lines at every point.

The current enclosed inside the path only contributes to

right side of Ampere’s law equation and the current

outside the path does not contribute. There are some

applications are as follows:

1) Magnetic Field Produced by a Long Straight Wire
Carrying Current I: Consider a long straight wire
carrying a current I as shown in Figure 3.11.

al

Figure 3.11

To find the expression for magnetic field ar magnetic

flux density B at a point P, an Amperian surface as a
circle of radius r is drawn around the wire passing
through P. The magnetic field is tangential to the
circle and has the same magnitude at all points around
the circle. Hence the integral;

§T3-d7=§Bde=B§de (D)
But §d£’ around the circle of radius r is 27r.

Therefore, §}§ df=B-2mr ... Q)

From Ampere’s law, we have;

§B-di=p,I ceen(3)
Equation equations (2) and (3), we get:
B-2nr= pgol
Or B=tol eeni(8)
2
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2)

3)

Magnetic Field Inside a Long Cylindrical Wire:
Figure 3.12 shows the cross-section of a cylindrircal
wire of radius R carring current I, uniformly
distributed throughout its cross-section.

Figure 3.12

Let’s use Ampere’s law to find the field inside a
long straight wire of radius R carrying a current I.
Assume the wire has a uniform current per unit

area.
J =1/7R?

To find the magnetic field at a radius r inside the wire,
draw a circular loop of radius r. The magnetic field
should still go in circular loops, just as it does outside
the wire.

Apply Ampere’s Law
| B-ds =2mrB = Ho Tene

The current passing through our loop is the current
per unit area multiplied by the area of the loop:
Lo = Js ar’ = I'/R?

Therefore 2arB = p, IF/R?
B= ;1(,Ir/27rR2

So, inside the wire the magnetic field is proportional
to r, while outside it is proportional to 1/r.

Magnetic Field Intensity H Due to a Toroid: Toroid
is a hollow circular ring (like a medu vadai) on which
a large number of turns of a wire are wound.

Path2 (b)

@ Figure3.13

The figure 3.13 represents a toroid wound with a wire
carrying a current I. Consider path 1, by symmetry, if
there is any field at all in this region, it will be tangent

to the path at all point and fB'd/; will equal the

product of B and the circumference d = 2pr of the

—— —— I, d T

4)

r(,m;,gnclics (TP Solved Series) KTu;

Elect
ath however is zerq
P ¢ through the p )
pazlh.hlhc Lfl::)l:,:,n/\mpcrc’s Jaw the field B must be
and hence
7€ro.

. -« anv field at path 3, it will also be
>imili { there is any field 2
Z‘rznvl:r:zl};,'[hc path at all points. Each turn of the
winbding passes twice through the area bounded by

this path, carrying cqual currents in  Opposite
diréctir:;ns, The net current through lh'c area is
therefore zero and hence B = 0 at all points of the
path.

The field of the toroidal solenoid is therefore
confined wholly to the space enclosed by the

windings.
If we consider path 2, a circle of radius r. again by
symmetry the field is tangent to the path, and:

fBdf =B.fd/ = B2mr

Each turn of the winding passes once through the area
bounded by path 2 and total current through the area
is Ni, where N is the total number of turns in the

windings.

Using Ampere’s law

2B =y, Ni

B — uﬂNi
2mr

If the radial thickness of the core is small, field is
almost constant across the section.

Here 27r is the circumferential length of to the toroid.

2——— number of rtuns per unit length ‘n’ then B =
mr

Honi.

Electric Field due to a Solenoid: A solenoid is a
cylinder tightly wrapped with a thin wire over it
When current is passed through the wire, the magnetic
field produced outside is negligible and the field
inside is uniform and parallel to the axis as shown in
figure 3.14.

{mj K ( —
0000000000000
B

f ! e }1
(b) End View
Figure 3.14

(a) Front View

'I'ha: magnetic field is due to a section of the solenoid
.whlc'h has b_cen stretched out for clarity. Only the
interior semi-circular part is shown in figure 3.15.

Notice how the circular loops between neighbouring
turns tend to cancel.

e
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static Magnetic Field (Moqyle 3)

Figure 3.15

Solenoid is long wire wound in form of helix such

that‘ the length, of solenoid is large compared to the
radius of the closely spaced turns. |

goooooonnnonnooonos

Figure 3.16

In the figure 3.16 the upper dots represent the current
coming out of the paper. Using the right hand rule the
fields' lines inside the solenoid go from left to right.
Similarly the crosses on the lower side represent the
current going into the paper. The field lines inside the
solenoid also go from left to right. The two fields
being in the same direction add up but outside the
solenoid they cancel (i.e., the field contribution due to
the dots and crosses).

To find the magnetic field due to a solenoid consider
the Amperian loop (imaginary closed path) as shown
in the figure 3.16. :

The field along cd is zero as it is outside the solenoid.
Along da and be the transverse section the field is
zero outside the solenoid (also, B is perpendicular to

dl soB- d¢ =0). Therefore the only contribution
is from ab. Let the length ab be ‘h’. If there are n turns
per unit length, then the enclosed current 1. 18

i. = i(nh),

Where, Current in the solenoid
§E'd7=poie
[BdC =,
ab
_ _ Id( =ab
Bh =, nhi “Jap =h
B = pni

Direction is given by the right hand rule.

B-37

Ques 15) Find the vector magnetic potential and hence

the magnetic flux density B due to an infinite wire
carrying a current. at a point (i) inside, (ii) outside the
wire.

Ans:

1) Inside the Wire: Let a be the radius of the wire. By
symmetry, it is understood that only the z- component
of the vector potential exists.

) I
VA, =-J, = _L:_
Ta
Or‘ i_a_[l'_%j — _p._I;
ror or ma“
Integrating,
0A, I’
r—t=-——-5+C,
or 2ma

Since,ra;)-\‘Z =0atr=0=>C, =0
r

Integrating again,

2
AZ . ulr ) +C’)
4ma” B
. pl
SinceA,=0atr=a,=C,=—
4n

A?':H—I l—i;
~ 4w al

In vector form, the vector magnetic potential is given

as:
— 2 —
O L v
4| a?
Now,g = VXK
B, = (curlK), _104, _%A, =
r dd dz

Thus, the magnetic induction is:
= I, s
2ma”
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) Outside the \\'ire

gese
rar or

n_c
Jar r

Here,
1)

A, =CiInr+C,

Atr=a, A,=0 =

“ .“\3 = C] In (1)
a

The constant C, is found from the boundary condition

C~=—C| Ina

Latr=a

for

Since B=V XA,
JA,
or

~B, =

Now, B, must be continuous at r =
of equation (1), we get

a. From the result

aA ul
=— ) o)
or ”Tca
From equation (1) and (2), we get
I
G m o _u
a 2na 2r

In vector form, the vector magnetic potential is given
as:

A= i In (1) as
2n a

|

i
]
|
i
i
|
i
|
B

l’lcummagnﬂiu (TP Solved Series) KT1;

way as in equation (1), we 20
Proceeding in the same y

the magnetic induction a5:

4r a’
:_-_El_ln(_r_}‘,z r>a
2n \a
- ulr .
B= ~a, r<a
2ma”
=£—ﬁ° r>a
2mr
Ques 16) Given the magnetic vector potential,
2
11=--P—a Wb/m, calculate the total flux crossing

the surface ¢ =/2,1<p<2m,0<z<5m.

Ans: The magnetic flux density is,

B=VxA=_2A: a,=2a,
ap 2

Differential surface is given as, dS = dpdzéo

Hence, total flux crossing the given surface is given as:

0= jB dS = j j P3, dpdza, _—j jpdpdz

z=0 p=l !=O p=1

‘Z[PZEX5=—
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Electric and Maghetic Field in Materials

k

ELECTRIC & MAGNETIC

FIELD IN MATERIALS

Ques 1) Explain electric field j ;
| . n .
properties of material. material and write

Ans: Electric Field in Material

Elec'tn'c ﬁelds.can exist in free space, they exist in material
medlg. Materials are broadly classified in terms of lhe‘ir
electrical properties as conductors, semiconductors and
insulators. Non-conducting materials are usually referred
to as insulaters or dielectrics.

A conductor is a material which contains movable
electric charges. Metals such as copper aluminium are
examples of conductors. In a Conductor the outer
electrons of the atoms are loosely bound and free to
move through the material. In conductors, the valence
electrons are essentially free and strongiy repel each
other. Any external influence which moves one of them
will cause a repulsion of other electrons which

propagates through the conductor.

In an insulator the free electric charges are very few in
number. Most solid materials are classified as insulators
because they offer very large resistance to the flow of
electric current. In insulators the outermost electrons are
so tightly bound that there is essentially zero electron flow

through them with ordinary voltages.

Properties of Material N
The properties of semiconductors lie in  between

conductors and insulators. This is classified in terms of

their conductivity:

1) High conductivity
2) Low conductivity
(or insulators)

3) The rest is semiconductor

(>>1)is referred to as a metal
(<< 1 is referred to as a dielectrics

Ques 2) Discuss the magnetic field in material.

Material o
and molecules inside matter

resemble tiny current 100pS- If a piece of mfm:r is snu;;cid
in a maenetic field, the moment of magnetic forces party
aligns {hese loops. and we say that the substance 18

Ans: Magnetic Field in
In magnetic - terms, atoms

B-39

Module 4

magnetised The magnetic field produced by the substance
is due to these aligned current loops, known as Ampere’s b
currents. A substance in the magnetic field can therefore .
be visualised as a large set of oriented elementary current v
loops situated in a vacuum. These oriented loops can be ¥
replaced by equivalent macroscopic currents situated in a

~ vacuum, known as the magnetisation currents.

An elementary current loop is first characterised by a’
magnetic moment, m = I S, where I is the loop current and
S its vector area. Next the magnetisation vector, M, is

defined, as

M= _(z'—_;n)i" & o~ Nm (A/m), (D)
v

where, N is the number of Ampere’s currents per unit
volume. N

The Ampere currents can be considered to be situated in a
vacuum. Consequently, they can be incorporated in
Ampere’s law (which is valid for currents in a vacuum):

§CB-d1=u0uSJ-ds+§CM-d1) (2)
or \
§CH di=[Jds. (3)
where,
4)

H = B/py—M (A/m)

is known as the magnetic field intensity vector.

Ques 3) Discuss polarization in dielectric medium.
Or
- Explain the phenomenon of polarization and also
derive a relation between polarisation vector P),
displacement (D) and electric field (E).

Ans: Polarization in Dielectric

When an electric field is applied across a dielectric
material then the dielectric material becomes polarized.
This mechanism is called dielectric polarisation.

If a material contains polar molecules, they wi}l
generally be in random orientations when no elect.nc
field is applied. An applied electric field will polarise
the material by orienting the dipole moments of polar

molecules.
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Polarised by an applied electric field

CELIYENITITYIS
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Figure 4.1

This decreases the effective electric field between the
plates and will increase the capacitance of the parallel
plate structure. The diclectric must be a polarised by an
applied electric field, good electric insulator so as to
minimise any DC leakage current through a capacitor.

The presence of the dielectric decreases the electric field
produced by a given charge density

E —E-E .+ =9

effective polarization . ke
0

The factor k b’y which the effective field is decreased by

the polarisation of the dielectric is called the dielectric -

constant of the material.

The main difference between a conductor and a
dielectric is the availability of free electrons in the
outermost atomic shells to conduct current.

Carriers in a dielectric are bounded by finite forces and as
such, clectric displacement occurs when external forces
are applied. Such displacements are produced when an
applied electric field, E, creates dipoles within the media
that polarise it. Polarised media are evaluated by summing
the original charge distribution and the dipole moment
induced. One may also define the polarisation, P, of the
material as the dipole moment per unit volume is,

n o
Zdek
P= lim Xl
Av—0 Av

n
p
= lim =L
Av=0 Ay

Two types of dielectrics exist in nature:
1) Non-Polar: Non-polar dielectrics do not possess
dipole moments until a strong electric field is applied.

2) Polar: Polar diclectrics such as water possess
permanent dipole moments that further align (if
possible) in the presence of an external field.

Relation  between  Polarisation  Vector  (P),
Displacement (D) and Electric Field (E)

Electro

jaced in an external electric ficld
field due to polarised charges,
1d due to polarisation (E;).

The effect on dielectric
Ey and there will be Clc‘f"’;
this field is called electric 1€

That is:
(1
E=Ey-E, (1)
- .« equal to the bound charge per unit
Polarisation vector, P is ¢q density of bound charges

rface
arca or cqual to the surlact © o
(because surface charge density is charge per unik A

Thus, P = q//A = O, i)

Where q, is bound charge and o, is surface density of

bound charges.

P is also defined as the electric dipole moment of material

per unit volume.
P=np

Where n is number of molecules per unit volume.

Displacement vector, D is equal to the free charge per unit
area or equal to the surface density of free charges,

ThusD=g/A=0c .ee(3)

Where q is free charge and o is surface density of free
charges.
As for parallel plate capacitor (already derived in earlier
articles):

E=o0,/g @)

E,=oyes, L. (5)

By substituting equations (4) and (5) in equation (1), we
get

E= O'/E()— GP/E()
Or ¢gE=0- Gy

By putting equations (2) and (3) in above equation, we get
egE=D-P
Or D=gE+P

This is the relation between D, E and P,

Ques 4) Explain  briefly the different types of
polarisation in dielectrics.
. : Or
What is molecular polarisability? Explain electronic
polarisability.
- . Or
Write different mechanisms of polarisation in a dielectric.

Ans: Mgchanisms of Polarisation in a Dielectric/ Types
of Polarisation

Therc? are four different mechanjsms by which dielectric
polarisation occur:

1) Electronic ‘Polarisation: When a dielectric is placed
in on electric field, there js a displacement of electron
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Joud relative T s
‘l\tslcculc ‘ut‘ Ll‘ ';’ nuelei in the atom forming (e
Moot e

n i ”UL eetric, It causes an induced dipole
ome » A - r

m G 1t ‘nmluulo. This phenomenon s o e

electronic polarisatioy, S called

It results trom the displ

’ acement of the centre of tha
negative  charged ¢l centre of the

cctrons cloud relative to (he

atom by the clectrie fi “hi
‘ ric field. This
N \ MNRTAIEY \J ~, H ) ‘
shifting of electrons couyld result in a dipole moment

Dipole momentis defined as the product of the char e
and the shift distance, . g

P=qd

—_

Also Pis dircctly proportional to field strength

-

PE
P=aé

o (Alfa) is proportionality constant and known as
electric  polarisability and it is independent  of
temperature. :

Mono atomic gas exhibits only this kind of
polarisation.

-

- -
Pe=np=no, E

—
The contributions of P to the dielectric constant may

be obtained as follows,

P noE
k=l+y=l+—=1+
8(,E EUE
Field
No Fie Applied Field
Figlll"-' 4.2
P o En
g, =ltyx=l+—=l+—"—
. X g,E gk
no no,
€ Eo

The above expression indicates the dielectric
constant due to electronic polarisation alone and thus
oives the dielectric constant of non-polar gaseous
dielectric.

i isati ic Polarisati sults from the
Ionic Polarisation: Tonic Pol.lfn».mo_n result
and —ve lon air molecule held

s. When an clectric field is
applied to such a molecule their positive r_md negative
ion are displaces further in opposite dl'rcctmn ¢}nd
their inter-ionic separation IMCreases until b(?undmg
force to stop the process and thus increasing the

separation of +ve
together by ionic bond

B-4]

dipole moment, The induced dipole moment due to
jonic polarisation will be

-
Pi =il

Such molecules have a built up permanent dipole
moment which exist even in the absence of electric
field.

@@ (@)
@ ro X
(aE=0 (b) When electric field E Exists

Separation Increases
Figure 4.3

3) Orientational or Dipolar Polarisation: When the
polar molecules are subjected to an electric ficld, the
randomly distributed dipole field orient themselves
with the applied field. This tendency of orientation of
dipole along the field direction is called orientational
or dipolar polarisation,

The orientation polarisation is temperature and
frequency dependent. It take relatively large time to
align along the applied field.

O o0 oo
IO oo
o & @@

Figure 4.4

If n is the number of molecule then orientational
polarisation.
Py=noyE

4) Space-Charge Polarisation: This type of polarisation
occurs due to the accumulation of charge at the
electrode or at the inter phase in a multiphase
material, the ions diffuse over appreciable distance in
response to the applied field, giving rise to a
redistributions of charge in the dielectric medium.
This type is also known as interfacial polarisation.

0000000
0000000
0000000
©0/60000

Figure 4.5

Now the total polarisation p of a multiphase material
is equal to the sum of differential type of polarisation.
P=P.+P,+Py+P,

Ques 5) Discuss the nature of dielectric materials and
dielectric mechanism.

Ans: Dielectrics Materials

Dielectric is a non-conducting substance, i.e., an insulator.
An ideal dielectric material is one which has no free
charges. Although “diclectric” and “insulator” are
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gcncmll‘y considered synonymous, the term “dielectric™ is
more 'oltcn used when considered the effect of alternating
electric fields on he substance while “insulator” is more
uflcn used when the material s being used to withstand a
high electric ficld.

Diclectrics are not a narrow class of so-called insulators,
but the broad expanse of non-metals considered from the
standpoint of their interaction with clectric, magnetic, of
clectromagnetic fields. Thus we are concerned with gases
as well as with liquids and solids, and with the storage of
clectric and magnetic energy as well as its dissipation.

Dielectric is the study of dielectric materials and involves
physical models to describe how an clectric field behaves
inside a material. It is characterised by how an clectric
field interacts with an atom and is therefore possible (o
approach from either a classical interpretation or a

" Qquantum one. Many phenomena in electronics, solid state

and optical physics can be described using the underlying
assumptions of the diclectric model. This can mean that
the same mathematical objects can go by many different
names.

Dielectric Mechanisms

There are a number of different dielectric mechanisms,

connected to the way a studied medium reacts to the
. applied field. Each dielectric mechanism is centred around

its characteristic frequency, which is the reciprocal of the

characteristic time of the process.

In general, dielectric mechanisms can be divided into
relaxation and resonance processes. The most common,
starting from high frequencies, are:

1) Electronic Polarisation: This resonant process
occurs in a neutral atom when the clectric field
displaces the electron density relative to the nucleus it
surrounds. This displacement occurs due to the
equilibrium between restoration and electric forces.

2) Atomic Polarisation: This is observed when the
electronic cloud is deformed under the force of the
applied field, so that the negative and positive charges
are formed. This is a resonant process.

Ques 6) Determine the energy density in electrostatic
fields.

Or
Derive the expression for energy stored in an electric
field.
Ans: Energy Density in Electrostatic Fields /Energy
Stored in an Electrostatic Field
Energy stored in an electrostatic field is given by,

1 ) 3
Wi =—¢g,E-Joules/m’
9

When a positive charge is brought from a distance of
infinity to a point in a field of another positive charge
work is done by an external source. Energy spent in doing
so represents the potential energy.

[ilectromagnetics (TP Solved Series) KTU
is removed the charge that is brough

Il the exte source ’ g
exteenal gol nergy of its own and it is

moves back, acquiring Kinetic ¢
capable of doing some work.
IV is the potential at a point due (o some fixed charge,
Work done = potential energy

Wi =QV

Where, Q is the charge brought by an external source,

That is,

Vis the potential at the point due to a fixed charge.
Let us consider two charges Q; and Q, separated by a
distance of infinity. If Q; is fixed, work done on bringing

Q; towards Q, given by,
W, =Q,Vy!

Where
V,' = potential of Q at Q,
Similarly, consider another charge, Qs which is at infinity
from Q, and Q,. Work done in bringing Qs towards Q; and
Q; is given by,
I 2
Wi=Q;Vy +Q;V;

This is because there exists force due to Q; and Q; after Q,
is brought to Q.

In the above equation, V5! and V42 are the potentials at Q,
due to Q; and Q, respectively. Therefore, total work done
in bringing Q, and Q; is,

W, = Wz + W]

In-a similar fashion, consider n charges. Then we have
Wi=QVa' + Qv + Qi) + (QaVi' + QuVit+ Qv )+
QVa' + Qi 4+ Q, V™

thatis, W, = iiinii

i=2 j=I
Where, V,j is the potential of Q at the location of Q,.
And QV!=Q——=Q —___quvi
J 1 S i
dney Ry Tdne,R; T
W, is written as,

We=QVi + Qv + Q) +(Q V' + Q2Vy' + QyVyt
ot (QIVI" + szzn + ...+ anIV“nAl)

Adding the above (wo equations and simplifying, we get,
2WI=QI (VI. 't V]'1 + V]4 + ...) + Qz (V2I +V2" + V:Al + ...) + QJ
(V' +Va2 e vy ey

= Q; x (potential at Q, due to all other charges) + Q, x

(potential at Q, due to all other charges) + Q, (potential
at Q, due to all other charges)

=QVi+Q:V2 +...Q,V,

2w, =3V,
i=
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This equation represents (he potenti
system of n point charges,
¢ Q=[ouds

v

al energy stored in a

1
\VE = ; j p\.Vd\‘

But, V.D = p\' or V-E = p\/ 8 0
1
W, = EJEO(V.E)Vdv
From standard vector identity,
(VEV=V.VE-EVV

. 1
This becomes, W, = 5 € J' (V.VE-EVV)dvy
1 1
= EEOJ(V.VE dv+—g,[EEdy
v =y
Applying divergence theorem, first term on the right hand

side can be written as,

J'V.VE dv:j V EdS

Complete Surface
space bounding the
space

However, viewing from a surface bounding complete
space, the charge distribution of finite volume appears as a
point charge, say Q. We know that

Q

4ne,r?

Q

4me)r

E=

ar

And V=

From the expressions of E and V, we get

Surface IVE.dSan
boundary
the space
2n
= Lt I J' Q Q a,r’ sinBd6doa,
r 0 4mear  4megr

[as E is a,-directed, dS is a,-directed and ds = r* sin 6 dO
do]’

2n 2
=Lt_[“ Q" Ginpdodo=0
r—e0 ¢6=0 JTIEOI'
4=0
] EEdv
Hence W, becomes, W, == %o
Complete
space

J‘ _I_SOEZ dv Joules
9

Complete ~
space

0[', W, =

t

The above expression is the total energy stored in an
electrostatic field.

B-43
Therefore, the integrand represents encrgy density, that is,
energy density in electrostatic field is given by,

s
W = ;EQF.“ Joules/m’

-

Ques 7) There point charge -InC, 4nC, 3nC, are
located at (0, 0, 0) (0, 0, 1) (1, 0, 0) find energy in the
system.

Ans: Using the energy formula,

1< 1
w Z';ZQI\VK ;E(Q]vl +Q,V, +Q;3V3)

“ K=l
:& QZ + Q3 + Ql QI + Q3
2 |dney () 4meg() | 2 [4ng, (D) dng, (ﬁJ

ol o @
"2 [4K8()(1)+4neo(x[2_)}

(Q|Qz +Q,Q;+ Q\g/gz j

1
4ne,

12
= 9 —-7 nJ=13.37n]

NG

Ques 8) Calculate E at P (1, 1, 1) in free space caused by

four identical 3-nC point chargers located at P, = (1,1, 0)

P,=(-1,1,0),P;= (-1,-1,0) and Py = 1,-1,0).

Ans: " we find that,
r=ac+a,+a,
I =ax+ay

and thus,r—r, =3,

The magnitudes are:

lr—rl|=1
[f-r|=+5
Ir—r5|=3
forf=5
_ 1 Q)
dnegig Ir—x B
Or E= Ql(r‘-l’])‘ Q,(r—ry)
dmeglr—r PP 4neglr—r, PP
"Q=Qi=Q:=Q;...)
__Q | r-g r-n r-n r—-n

= : Tt
dne, |r—r1| [r—r2

Put the value of all the component which we find above.
a, i+ 2a, +a, |
T
2a,+ag+a, 1 2a,+a, |

R

3 3
el e

__ 3107
47x8.854x107"*
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aoba, 1 20 k20, ka, |
P Pt S N . Mt Bt A

Y]

25
1L = 2696 s ;
Qigba, |

Js s

On solving we pet;
e .82 a0+ 0.82 0, + 32,80, Vim

Ques 9) Determine the boundary conditions of electric
ficld from Maxwell’s laws,

Or
Derive the boundary conditions between dielectric of
conductor and hetween two conductors,

Or
Explain the tangential and normal boundary conditions
between two diclectries for static electrie fields.

Ans: Boundary Condition of Electrie Field

When an electrie field passes from one medium (o other

medium, it is important to study the conditions at the

boundary  between Jtwo media, Depending on natre of

medium, there are two sitwations of the boundary conditions:

1) Boundary Conditions  between  Dielectric  of
Conductor: Now consider a boundary b/w dielectric
and conductor as shown figure 4.6:

as ¢ diclectne (medium 1) g,
“ X
E
O e

;

Guussiand®
Surface Figure 4.6

Q = 00 Conductor (medium 2)

Inside a conductor external charges is zero because
duc to force these tends towards surface.

Now for Rectangle wxyz,
FFrom Maxwell equation ;{li (dr=0.

j' l;-d:-qj } l-:.m.o-J' E - df
Wy A surface surface -y

-0—J‘ |-:~dr+J' E-di+ E.di=0
vt 2-surface surface =w

. Y Al
By AL =By -5 4040404 Ey -2 =0

- -

I:l.ml AL =0
= E,u=0= l),“' =( {.\ilICL‘ D=¢ L}
1.e., tangential component of electric field intensity is zero.

Now consider evlinder, apply Gauss law.,

;[ D-ds=Q
_[D-d.\ t J'[)wI\J.» I[)-(l\ =Q
top hottom lateral

DN. “As+04+0=Q=p, - As

l)\ = p\

. D,

Or Eg Ly
' €

Elcctrﬂm‘"‘g"c”cs (TP Solved Series) KTy
i e a normal component of flux density 1s equal to
surface charge density: Diel

T ielectric:

2) Boundary Conditions between [\;vrc:mdielcctricnfcn

Consider a boundary hetwesH h

shown figure 4.7: Diclectric 1€,
As

I)Nl I)Lml

7
I).u.‘ .
< " Dielectric 2 €2

Dn:

Figure 4.7

For Rectangle wxyz
From Maxwell equation §E -dl=0

J.w..\ E (lf+ x—surface E ) df+ surface—y E ' d[+ J‘)LE ' d£
.de E-d=0
+J’I—\url'.1n'c E dé+ surface=w ,
Ah Ah
= E,, AL+(-Ey ) —~ En, &5~ E,,, -AL

Al Ah
+E’.\'~ "';1+EN, T—_—O

A '

Ah o
Ah = very small so = - negligible.

= (F«l.ml - EI ml) -AL=0

& _E& _ &y

tanl __

. €, E,8, €,

tan.- 2

= Eun=Eu:or
i.e., tangential component of electric field intensity
are equal for dielectric boundary.

For Cylinder
From Gauss Law )ED.ds =Q

[p-ds+ D-ds+ [Doas=q

top bottom lateral
Dy As— Dy -As+0=Q
= (D‘\.; - D_\.: JAs=Q=p,- As

= DN: — DN_- :p‘

For charge free boundary p, = 0 than,

D,\‘, . D\'.
= E-\.; :ﬂ— sr'
E-\‘: & €,

ie. normal components of electric field intensity are
inversely proportional to the relative permittivities of
the two media.
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If consider two different valves of

( medium e, D
and D; for two medium, s

AQ
LN

Dy
DNMO tanl

Dz 02‘
DI.'mZ 1

Figure 4.8
If 6, and 6, are the angle between DN, ,DiandDy ,D,.

As from boundaly conditions D, = D and E =
’ N, N, tanl
Elan'.’

Dy, =Dicos6, ’
And Dy =Dsc0s0,
»Dlnnl = D]SiﬂB]
and Dun2 = D2sind;
Dun _ Dysind, _€
— Dum Dysin®, €,
= €, Dysind, = €, Dsind, (1)
and D;cos0; = D,cos6, » ..(2) ‘
' D, sin®, D,sin6,
From (1) and Q) ——— ¢, =—— €&,
cos@, ' DjcosB,
tan®, €,

Ques 10) A potential field is given as V = 100 ¢ sin
3y cos 4zV. Let point (0.1, w12, w24) be located at a
conductor free space boundary. At point P, find the
magnitudes of,

1) V 2) E
3) E, 4) Ey
5 D 6)VDN
7 ps
Ans:
T e
) AtP.x=01 y=17 2=
. 31 4t
= 050 T g — =37.1422V
V=100e smlzcos24 37.142
.....Use radian mode
_ av. _  aV,_ 9V, _ ]
2 =— =] X3 +——-—a\ + 3.7
) E=-VV (E)x a, 3 %

=—100{-5¢ >*sin 3y cos 423,
+e~5%(3)(cos 3y) (cos 4z)a,
e (sin 3y) (4) (-sin 42)a, ]

e et~ T T e T —

B - 45

AP, T = ~100[~1.857a, +1.114a, = 0.85776a,]
—1+185.7a, —111.4a, +85.776a,V/m

I E |=232.9206 V/m

3) F,=0V/masPisonthe boundary
4) Ey=I|E=232.9206 V/m
5) D=¢g,E=8.854x107"

[185.7a, —111.4a, +85.7761, ]

—1.5883, —0.9529a, +0.7337a, nC/m’
IDI=1.992 C/m’

6) Dy =DI=1.992 nC/m*
7) Dy =p,= 1.992 nC/m’

Ques 11) Given that E, =2a, —3a, +5a, V/m at the
charge free dielectric interface as shown in the figure
4.9. Find D, and the angle 8;, 6,.

mmmmm e N

D
=

E,

~locdeosgp=s
Figure 4.9
Ans: As shown, z axis is normal to the surface. So part of El

which is in the direction of a, is normal component of E, .

E\, =5a, V/im

tanl

And El =Ey, +E

E.i=E —Ey=2a -3a V/m .. (1)
At the boundary of perfect dielectrics,

E,. =E,,=2a, -3, Vim l(2)
Now, ﬁm 5 = 8OE( ma1 = EOErlﬁmn 9 . e 3)
And, Dy, =¢,Ey, =€, Ey, . 4)
But, Dy, =Dy, =g,¢, Ey, ..(5)

And Bl = BNZ +6mn2 = EOerlENl + EOSrZE
=¢g,[5(2a, —3a,) +2(53,)]
=8.854x107"*[10a, — 15, +10a,]
D, =88.54a, —132.81a, +88.54a, pC/m’

tan 2

As Dyy, Eyy, are in same direction and Dy, E,, are in same
direction,
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o .
Duy =D, cos 9, el By =B cos 0;

P .
Where 0 is angle measured w.r.t normal.

|Ey 1= SandI E, 1= () +(=3)" +(5) =6.1644

cos ) = Ex -
E, 6.1644
8] =35.795°

This 6] is angle made by El with the normal while 8, is -

shown with respect to horizontal.
8, =90 - 6] =90 —35.795 = 54.205°

Similarly if 8’,is angle made by E, with the normal then,

+2 Eng _ D D
cos 0;'=—N2 - N2 _ NI , =Dy
S D, D, ~ (Dx2=Dnyp)
_ el)ErI_I_ENI |
ID, |
_ €, %25
£, X107 +(=15)% + (10)>
=~——10——-—-=0.485
20.6155
8, =60.982°

8, =90 — 0,=29.017°

Ques 12) Determine the boundary conditions of
magnetic field from Maxwell’s laws.

Ans: Boundary Condition of Magnetic Field

Magnetic boundary conditions are the conditions that a
Bor H (or ﬁ) field must satisfy at the boundary between
two different magnetic media.

To determine the conditions, we use Gauss’ law of
magnetostatics and Ampere’s circuital law,

§§d§ =0 and §ﬁa.1 = Lene
S S

We consider two different magnetic media |1 and 2,
characterised by the permeabilities 1, and p,, respectively.

Pl = W
i
-

Figure 4.10: Magnetic Boundary Conditions

[lectromagnetics (TP Solved Series) KTy

Apply Gauss's law to the pillbox (Gaussion surface), wit
Ah—0,
n'"AS - B:,\AS =0

B|,,‘—'—'an <oA1y

In term of the field intensity, the boundary condition can
be written as,

HiH i, = poHo, ekl

Thus. the normal component of B is continuous, but the
normal component of H is discontinuous at the boundary
surface.

Now, applying Ampere’s circuital law, assuming that the

boundary carries a surface current K wh0§e component
normal to the plane of the closed path abcda is K (A/m),

Ah Ah

KAw=H,lAm—H,n—7—H2n > -Hy 80
Ah
+H2nA—h+Hln—
2 2
(H,-Hy =K veen(3)

In terms of the flux density, we have,

(ﬁ_h} =K . (4)
Hi  Ha

N
Thus, the tangential component of His also
discontinuous. The directions are specified by using the
cross product as,

—

- -
(H,-H,)xa,,; =K
- - - -
Or (H,-H,)=Kxan: (D)

=
Where an21 is the unit vector normal to the boundary
directed from the medium 2 to the medium 1.

If the media are not conductors then the boundary is free
of current, i.e., k = 0; then

B B, '
H,=H, >—"=—*andB,, =B,, ()
R By

If the fields make an angle 6 with the respective normal to the
interface then we can combine the boundary conditions as,
Bisin®, B,sin0,

and B, cos Bl =B, cos 0;

Ky %3
Combining,
tan9, p,
———=— or J,cotf =p;cotH,
tan®, u,
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1.3) Th@l'l‘. IS a boundary at z = 0 between (w
m,gnct-nc materials. Permittivities are By = z), (l{/n:;
for region 1 (z > 0) ang H2 = 14, (H/m) for region 2 (2
< 0). Surface current density K is S0, ( the

. B X

A/m) at the
poundary (z = 0). There is a field B, =4

- a, -6a, +4a,
(mT) in region 1. What is the flux density (B

region 27 3) in

Ans: Given that B, =(47, =63, +4a ) (mD. It is
shown in figure 4.11. '

Normal component of §1 is obtained as
—B_nl = (Bl ) 5ﬂ )En
or =[(4a, —6a, +4a,) 7, Ia,

Oor =4a,(mT)
And also,
B., =B, =4a,(mT)

Medium ‘17 H,

‘uy’ —
RRIXIR® X
Medium 2’ : <

e ! —>!

2 1 Ho

1 1

' ;

1 ]
<>

| Al '

Figure 4.11: Two Magnetic Materials

Tangential component of B, is obtained as
B, =(B, —Enl )
= (43, —6a,)(mT)
Or =(1592a, —2388a,)(A/m)

< B,
T
(43, —6a,)x10”

2x4nx107
- =(1592a, —23882,) (A/m)

Further, H, = ﬁ:, —(Kxay)
or —[(15923, —23883,)—(50a, xa,)]
= (15923 —24383,)

oL —14x4nx1077 (15922, —2438a,)

B-47

Finally. B. can be obtained by using the relationship as

given below:
B, =B, +B, =4a, + 4xdnx107 (15924, - 2438, )

Ques 14) There are two homogenous, linear and
isotropic, media with interface at x = 0.x < 0 describes
medium 1 (g = 4. x > 0 describes medium 2 (y,, = 10).
Magnetic field medium 1 is (30a, —80a, +70a,)
(A/m). Find the magnetic field in medium 2. Also, find
the magnetic flux density in medium 1.
Ans: The magnetic field in medium 1 is obtained as

Hi = (303, —80a, +70Q,) (A/m)
Further.

H,=H, + H,
It is given that

H, =(=80a, +703q,) and

: \ e

H, =30a,
Applying boundary conditions, we get

H, =H,,
or H, =(-807, +701,) (A/m)

n, ns

or ngnl =“2ﬁn,
o M O
or H, ——an: =7t o
2 1,
or =—x30a,
10

or =123,
H,=H_+H,

or =(+12a, -804, +707,) (A/m)
Magnetic flux density §=!_11ﬁl or =11, “(\ﬁl
1

or =4x4mx107(307, —80a, +70a,)

or =16m(3a, —8T, +7,)((uWhb *)
Ques 15) What do you mean by current density?
Explain different types of current densities. ‘
Or
Define conduction and convection currents.
Or
State point form of Ohm's law.

Ans: Current Densities

Current density is defined as the current at a given point
through a unit normal area at that point. It is a vector and it
has the unit of Ampere/ m®, It is represented by J.
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Types of Current Densities

There are two types of current densities:

1) Convection Current Density: Convection current
occurs in materials having a few free electrons or
ions, that is, in dielectrics (or insulators). It is
produced due to the motion of electrons in an
insulating medium, such as liquid, vacuum, etc., does
not satisfy Ohm’s law.

To derive a relation for convection current density,
consider a filament shown in figure 4.12 through
which a charge Q of density p, flows with a velocity u
along the y-direction.

| G i
\I
L A Y
]
' ~
) N
|
]
o
]
.
N
L}
—
4.*.--
e

Figure 4.12: Convection Current in a Filament
As the charge is flowing in y-direction, let us take
only the y-component of the velocity into account,
which is uyﬁ\,.. The element of charge AQ of density

Py enclosed in the filament of volume Av is obtained as:
AQ =p.Av

Thus, the element of the convection current through
the filament is obtained as:

A1=4Q_p.AY
At At

The volufme Av in terms of surface area As can be
represented-as,
Av = AsACL

Where, AC is the distance that the element of charge
AQ has moved in the interval At.

Al
Thus, Al =p As—
At

= Al=p,Asu,

Al , )
Where, u, =—is velocity of the moving clectrons.
At
The expression for convection current density in y-
direction (that is 1,) is obtained as:
J, = p.,

In general. the expression for the convection current
density is given as:

J=p.i

2) Conduction Current Density: Conduction current
occurs in materials in which there are a large number
of free electrons that is in conductors. Tt is produced
due to the motion of free electrons in a conductor on
the application of an electric field. As it involves
conductors, it satisfies Ohm’s law.

Electromagnetics (TP Solved Series) KTy
mal electric field (E)is applied to »

the charge inside the conductor
which is given as:

When an exte

metallic conductor, gl
(electron) experiences & orce,

F=-¢cE
Where —e represents the negative charge on an
electron. -
Conductor
" m

®

‘e@—"uG)@
®

®—>
@—4»

E

()

A'ccording to Newton’s law, we have;

mu
—=—E

T
et
u=——E
m

Where (1) is the average time interval between
collisions, if there are (n) electrons per unit volume,
the electron charge density is given by

py=—ne

Thus the conduction current density is;
2
ne 't
E=cE

J=p,u=
m

J=cE ....(8)

Here conductivity (6) is measured in mhos per meter
(8/m).The equation (8) is called point form of Ohm’s
law. The unit of conductivity is also called Siemens
per metre (S/m). For the metallic .conductors the
conductivity is constant over wide ranges of current
density and electric field intensity. In all directions,
fncmlli.c C(.)l‘ldLICIOI'S have same properties hence called
1sotropic 1n nature. Such materials obey the -Ohm'’s
law very faithfully.

Ques 16) State continuity equation and also define
relaxation time.

Ans: Continuity Equation

Continuity equation states that “if the net charge crossing a
surface enclosing closed volume is not zero, then the
charge density within the volume must charge with time in
a manner that the rate of increase of charge within the
volume equals the net rate of charge into the volume.”

Let us assume that charge ‘p’ is a function of time. The
transport of charge is responsible for current.

dq

ie., [I=—

dt
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Ifpis volume charge density, which is given by

_ da
P av
d
=—|pdV
I dtIp (1)

Here, it has been considered that the current is as the
extended in space of volume V cloged by a surface S. The
current density J is defined as net amount of charge
crossing the unit area normal to the direction of charge
flow of the surface in unit time.

1=]1-d8 | e @
From equation (1) and (2), it becomes,
- - d
[T-ds=—[pdv
dt P
The current is flowing outward direction so current I
should be negative and hence above relation becomes,
T d . .
[J-ds=——]pdV
dt P
Gauss divergence theorem,

[T-ds=[(V-T)dv

- d
V-1)dV =——pdv
(v-3) =P

- do. -
o Jv-T+yav =0
dt
Since, the arbitrary volume dV # o,
v.i+2 o )
dt :

This equation (3) is called the equation of continuity.

i 9p_ 0 Hence
For stationary current p is constant. So, o ence,
V.1=0

Relaxation Time ) ) .
The relaxation time is the time it takes a charge placed in
the interior of a material to drop by € (=36.8%) of its

initial value.

. . -19
For good conductors T;is approx. 2x107s.
Assume that a charge is introduced at some point inside a

given material. Since:

J=0E
Substitutjng this value of Jin equation (3), we get;
Voi o 9P ‘ @)
€

B-49

Now using Gauss’s law,

vE=Lr
£

Thus, equation (4) can now be written as,

op, __9p . lS)
€ ot

op, 9P, _
Py v =0
£ ot

Separating variables in the above equation, we get;

Qp_v:_ga[ ... (6)
Py €

Integrating both sides of equation (6), we get;

ot
ﬂl’lpv = _—€—+ €npvim

Where pyin is the integration constant and represents the
initial charge density at t = 0. The above equation can also

"be written as:

t
En—pv—=—6—

pvint €
—-ot/e

pv = pvint e
Or pv = pvim e_t/Tr """ (7)

Where T, represents the relaxation time. It is also known
as re-arrangement time and is given as:

=2 .. ®)
o)

Some important points regarding relaxation time are as

follows:

1) For good conductors, the relaxation time is very
short as the charged particles move very rapidly
inside them and redistribute themselves at the
surface quickly.

2) For good dielectrics, the relaxation time is very long

as the charged particles are bound and thus not free to
move in the dielectrics.

Ques 17) Explain the concept of displacement current

and show how it led to the modification of Ampere’s law.
: Or

Explain the concept of displacement current.

Or
What is displacement current?

Ans: Displacement Current

Current in conductor produces magnetic field but a change
in electric field in vacuum also produces magnetic field.
So a changing electric field is equivalent to current and
exists as long as the field is changing. This equivalent
current produces the same magnetic effect as the ordinary
current in a conductor. This equivalent current is known as
displacement current.

e T Y, 7 e e
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Maodification of Ampere’s Law
We shall now consider Maxwell's curl equation for magnelic
fields (Ampere’s Law) for fime-varying conditions,

For static ficlds EM fields, we have
VxB = Uy J

Taking divergence of both sides
V.(VxB) =V, pol
0=V.(uyJ)

=py V]
s V=0

[Since,V.(VxA) =0)]

This means that the current is always closed and there are
no source and sink.

But the continuity equation is
V.J =~ dp/dt for time varying fields

So this equation fails and it needs little modification, So
Maxwell assume that,
VxB =y (J+ 1y)

Taking divergence both sides
V.(VxB) = po [(V.J) + (V.]y)]

But V.(VxB) =0
0=py(V.J)+py(V.]y)
V.Je-V.J]

By putting from continuity equation  V.J =dp/dt
V.14 = dp/di 1)

(By Maxwell first equation, V.D = p in equation (1))

V.J,=d V.D/dt
V.J, = V.dD/dt

Therefore, J; = dD/dt

This additional term J, = dD/dt is displacement current
density, A/m’

The Ampere’s law for time varying field takes the form,
Putting in equation (4), we get

VxB = py(J + dD /dy)

B=pyH

Vx (po H) = po(J +dD /dt)

VxH = (J +dD/d)

This equation is applicable for varying as well as stcady
currents.

Ques 18) Derive Maxwell’s equation. Explain the
physical significance of each Maxwell’s equation.

Ans: The derivation differential form of Maxwell's

Equations is discussed below:
1) Derivative of First Equation: “Maxwell first

equation is nothing but the differential form of Gauss

law of electrostatics.”
DivD=AD=p

2)

filiee omagetics (O Solved Beres) Ky

fer n sutface B hounding w volume V iy 4
jeleetric medinm totnl chagge
I dn the charpe density of
il velume element dv,

Let us consie l
dielectric medinm, i
conslgts of free "','“”!Z" ,
free chnrge al i point in i an

i he enpress ns, "The 1o
jon over i closed surface iy
| charge enclosed,”

Then Causs's law cil
normal electrical ‘uulml
equal to -~ times of 1/ ey toli

A 1 ‘l
f‘l’,ml.s - -~

)

RS :' { pdv

(]

Where,
p = charge per unil volume
vV = volume enclosed by charge,
By Gauss transformation formula
[divEdv = e, [p dv

v v

JA,, ds= IVA dv
i v

A= ey

A B =P

Ay li=P

If p=0 then A, tyl=0

or A.D=0 (since D = yl)

Derlvative of Second Equatlon: ‘The 2 form of
equation can be written as,

DivB=AB=0
“It is nothing but the differential form of Gauss law
of magnetostatics,”

Since isolated magnetic poles and magnetic currenty
due to them have no significance, Therefore magnetic
lines of force in general are cither closed curves or o
off to infinity, Consequently the number of magnetic
lines of force entering any arbitrary closed surface is
exactly the same as leaving it It means that the flux of
magnetic induction B across any closed surface is
always zero,

Gauss'law of magnetostatics states that “Total normal
magnetic induction over a closed surface is equal to
zero,”

ie.; IH nds =0

‘
]

Applying Gauss transformation formula we et
j V.B dV =0
v

The integrand should vanish for the surface boundary
as the volume is arbitrary,
V.B =)
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%) Derivative of Third |qy. The 3¢
VXE=- a\B
ot

law can be written as,

“It.is nothing but the ¢; )
: ifferent ,
law of electromagnetic inductiorllrfl’l, form of Faraday's

According to Faraday’

T y's law of electrom i
' i agne
induction, it is known that e.m.f, induced in g cglostelg

loop is defined as negative r.
flux, i.e., € = — df/dt ate of change of magnetic

Where,
0 = Magnetic flux

Or ¢=jBnds

d=B/A

Where,

Any surface having loop as boundary
[E-de=—dgdt wwss(1)
¢

Putting the value of ¢ in equation (1), we get
[E-dt=-d/dt[B-nds

LE.d@ = LdB/dt -nds

Applying Stoke’s transformation formula on L.H.S,
J-V x Ends = I— §§nds
ot

Or J(VxE+aa—]t3)nds=0

Further validity of the equation,

oB
VxE=—=0
X ot

This is known as Maxwell’s third equation.

4) Derivative of Maxwell’s Fourth Equation: “This is
nothing but differential form of modified Ampere
circuital law.” According to law, “The work done in
carrying a unit magnetic pole once around closed
arbitrary path linked with the current” is expressed by

[ Bde=p,xi

i = Current enclosed by the path

| Bdt =p, [nds

Applying, Stoke's transformation formula in L.H.S.
IstB nds = LIJOJ“dS

Js(VxB-pJynds=0

3) Maxwell

It is known as the fourth equation of Maxwell.

Taking divergence of both sides
V.(VxB)=V.(uoJ)
0=V. (Mo Iy=Hp v.] [V.(V xA) =0]
V.J=0
This means that the current is always closed and there
are no source and sink.

But the according to law of continuity,
V.J=-dp/ot

So this equation fails and it need of little modification.
So Maxwell assume that
VxB = Mo (VJ) + }Jo(VJd)
0=po (VD) +po (Vo)
By putting V.J4 = dp/ot seaee(1)
V.J4=V.dD/ ot
J, = oD/ot (By Maxwell first equation, V.D = p in
equation (1))

Putting in equation (1), we get;
V x B = po(J +dD/dt)

B=po=H ‘
V x (o = H) = po(J + dD/0t)
V x H = j 3D/t

The Derivation of Integral Forms of Maxwell’s
Equations are discussed below:

—
1) Maxwell First Equation: Consider V-D=p

j(V-B)dv=Ipdv
§D-ds =Q
S

2) Maxwell Second Equation: Consider 0 B=0,

Take the volume integral of both sides of the
divergence equation over a volume V and apply the
divergence theorem:

j(aﬁ)dv=o,
v

Results, §B- nds=0
S

Third  Equation:  Consider

5
= 9B ..

VXE = S and integrate over an open

Or surface S with a contour C and apply Stoke’s

Theorem:

-

!VXE' nds = —!aa—}?--ﬁds

4) Maxwell Fourth Equation: Now consider,

i -
For the validity this equation -
VxH=J+—
VxB-poJ=0 H=T+ s
V x B= Ho J
- e Sy |\ P B A g ]

Scanned by CamsScanner



B-52

And. integrate over a surface S

IVxﬁ-ﬁdsz—I T+az)—? -nds
S S

N - —5 aB . he
in-u:{ J+—at— -fids
S EICL A P
iH-dK:H-S[ J+—at— -fids

Ques 19) Write the Maxwell’s equation in differential
and integral form from modified form of Ampere’s
circuital law, Faraday’s law and Gauss law.

Or

Write the Maxwell’s equation in differential and
integral form for static EM field.

Or

Write the final form of maxwell equation.

Ans: Maxwell’s equation from modified form of
Ampere’s circuital law, Faraday’s law and Gauss law/

- Ty

L?]cclmm-'l

Maxwell’s Equation fo
Maxwell’s equation
The Maxwell's equatiofl
table 4.1 below:

gnetics (TP Solved Series) KTU
r Static EM Fields/ final form of

< for static EM fields are shown in

ic EM Fields

Table 4.1: Maxwell’s Equations for Stat Remarks |
Differential Integral Form emarks 1
(or Point) ;
Form , l
Gauss's |-
» == dV |
V-D=p, st ds JP\ Law p
| | n 1
—] Non- !
V-B=0 ,£B -ds=0 existence !
of $
magnetic |
monopole |
. e |
p) Faraday’s |
VXE:—%B‘ ﬁ_E'd(:—_a—tJ‘BdS Law ‘
t s
, Ampere’s
.dr=1J-dS
VXH=J+a—D— §LH d -!J Circuit
ot Law
T S TINLI

Scanned by CamScanner

IESE———



]

et o i

e T

ime Varying Electric
Ti fic ang Magnetie Fields Module 5)

B-53

Module 5

' TIME VARYING ELECTRIC

- AND MAGNET|C FIELDS

Ques 1) State and explain Faraday’s law

Ans: Faraday’s Law

According to F ’ i i '
y gt ; araday, a time varying magnetic field

produces an in uc'ed \"oltage (called electromotive force or

emf) in a closed circuit, which causes a flow of current

The induced emf(V.,) in any closed circuit is equal to the
time rate pt_change of the magnetic flux linkace by the
circuit. This is Faraday's law and can be expressed as:

dA
emf — = _Nd—w
dt dt

Where, N is the number of turns in the circuit and v is the
flux through each turn.

The negative sign shows that the induced voltage acts in
such a way to oppose the flux producing in it. This is
known as Lenz’s law.
Ques 2) Explain transformer and motional
electromotive forces. '

Ans: Electromotive Forces
Faraday's law links electric and magnetic fields, for a

circuit with a single (N = 1), faraday law becomes,

dy (D

7 - N ———
\cmf =-— dt

In terms of E and B. equation (1) can be written as:

d
7 — AdAf = —— -dS (2)
\ —.fE dié= dl:!B

emf

Where, y has been replaced by JB-dS and S is the
S

surface area of the circuit bounded by the closed path L.

It is clear from equation ) t_hat_ in a tln1et\'ar)'1n§

situation. both electric and magnetic !:elds are pre:em an

are interrelated. Note that d€ and dS in equation (2) are In
C witl and rule as well as Stokes’s

. -oht-h
accordance with the right h g
corv 5.1,

theorem. This should be obsery ed in figure

The variation of flux with time as in equation (1) or
equation (2) may be caused in three ways:

1) Transformer EMF or Stationary Loop in Time-
Varying B Field: This is the case portrayed in figure
S.1where a stationary conducting loop is in a time
varying magnetic B field. Equation (2) becomes

V. =§E-d(:—‘s[aa—}3-ds cee(3)

Increasing B(t)

144 /H\\\\; |

.\ ’/’/
d( _\M@-F_\&“ I

Induced B

Figure 5.1: Induced EMF Due to a Stationary
Loop in a Time Varying B Field

This emf induced by the time-varying current
(producing the time-varying B field) in a stationary
loop is often referred to as transformer emf in power
analysis since it is due to transformer action. By
applying Stokes's theorem to the middle term in
equation (3), we obtain;

j(VxE)-dea—B-ds ...... @)
ol g Ot

For the two integrals to be equal, their integrands
must be equal; that is,

VxE:—Aa—B .n(3)
ot

This is one of the Maxwell’s equations for time-
varying fields. It shows that the time varying E field
is not conservative (V x E # 0). This does not imply
that the principles of energy conservation are
violated. The work done in taking a charge about a
closed path in a time-varying electric field, e.g., is
due to the energy from the time-varying magnetic

field.

2) Motional EMF or Moving Loop in Static_ B Field:
When a conducting loop is moving in a static B field,
an emf is induced in the loop. We recall from

equation (6) that the force on a charge_moving with
uniform velocity u in a magnetic field B is: .
F,=QuxB ....(6)
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We define the motional electric ficld E,, as:

E =%‘—=uxB (D)

m

If we consider a conducting loop, moving with
uniform velocity u as consisting of a large number of
free electrons, the emf induced in the loop is:

Vo =$E, - d0=§uxB)-df ... 8)
L L

This type of emf is called motional emf or flux-
cutting emf because it is due to motional action. It is
the kind of emf found in electrical machines such as
motors, generators, and alternators.

3) Moving Loop in Time-Varying Field: This is the
general case in which a moving conducting loop is in
a time-varying magnetic field. Both transformer emf
and motional emf are present.

The total emf is obtained as,
\% =§E-dl=—ja—B~ds+§(uxB)-d1
S S Ot L

Or above equations can be written as,

VXE:—%—I:+VX(uxB)

Ques 3) What do you mean by power density of
electromagnetic waves? Derive the average power
transmitted by electromagnetic waves.

Ans: Power Density of Electromagnetic Waves

Power density is the time rate per unit of area at which
electromagnetic energy flows through some medium. The
quantity of energy is complexly related to the strengths of
the E and the H fields. E x H has units of W/m” It
represents the density of power carried by electromagnetic
waves across the surface S. It is called as

Poynting Vector.

Average Power Transmitted

The time-average Poynting vector indicates the average
real power density of electromagnetic waves. It can be
derived using time average of the complex poynting
vector.

Let E=Ex,e *cos(wt—B1)a,
H= ﬁe‘mcos(wt -Bt-6,)a,
2|

P

= %eﬁur%os(wt —PBr)cos (wt—Pr—8,)a,
n

Elcctromagnclics (TP Solved Series) KTy

P Eﬁe'z‘“{cosm +B)+cos(A+ B)}a,

2
EX(Z) -2at COS(Wt—ﬁT+Wt_BT—9n) }az
R P

P= %,x_le’e-?‘“ [cos(2wt— 2Bt-6,)+cosb, h,
n

T
Pav= if P(t)dt
T 0

- E‘i e*z‘“{—]— chos(Zwt -2Bt-6,)
2| T

1T }
+ T J; cos0,dT
2
—EXo 2enfp 4 cosh, }
2

= Ex; e *"cosh,
2|

¢

Ques 4) State and derive Poynting Vector theorem and
also express it in complex form.

Or
What do you understand by Poynting Vector?

Or
What is the significance of the Poynting Vector in a
static electromagnetic field?

Ans: Poynting Vector

Electromagnetic waves carry energy, and as they
propagate through space they can transfer energy to
objects placed in their path. The rate of flow of energy
in an electromagnetic wave is described by a vector S,
called the Poynting vector, which is defined by the
expression

The magnitude of the Poynting vector represents the rate
at which energy flows through a unit surface area
perpendicular to the direction of wave propagation. Thus,
the: magnitude of the Poynting vector represents power per
unit area. The direction of the vector js along the direction

of wave propagation. The SI units of the Poynting vector
are J/s.m” = W/m2

This theorem states that the cross product of electric field
vector, E and magnetic field vector, H at any point is a
measure of the rate of flow of electromagnetic energy per
unit area at that point, that is,

P=ExH
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Poynting vecy, irecti is i
Here P— ! ctor, the direction of P is perpendicy]
1o Eand Hand in the direction of vector E x H.

ST,

poynting Theorem

poynting theorgm States th
given volume is equal to
energy stored within volyme

minus the ohmic loss.
The Poynting equation ig given as,

; f (ExH)ds = =

| U T U

Power Transmited Losses

Power Generated

i.e., total power leaving the

due to motion of charge

! Proof: The energy density carried by the electromagnetic

wave can be calculated using Maxwell’s equatjons.

As div B =0 .. (€))]
divB=0 )
> 9B
! CurlE=—

e 3)

And  CurlH= J+aa+:) ceen(d)

Taking scalar product of equation (3) with H and equation

(4)with E

ie. H curlE=_—H~a—]? e (5)

And Ecurlﬁ=H J+E.aa—]t) cee(6)

Subtracting equation (6) from equation (5) i.e.

S3B =~ = 3D

H E-E _’=— ——-EJ-E.—
H curlE-E.curlH H ™ ™
e ﬁa~B+E§2 —EJ
t ot
as div(KxE)zgcurlA—AcurlB
> 3B =oD| ==

So div(ExH= HE+ESE -ET ..
But

B=pH andD=¢E

‘

ar

At net power flowing out of 4
the time rate of decrease ip

- [oBav - fi(%e E? +%uH2)dv

i volume = rate of decrease of
stored electromagnetic energy — Ohmic power dissipated

)

B-55

-

2 0B 29 2 10

L A =—p—(H?)
So H. o H.at (LH) Zpat
=£[1;;_g]
ot| 2
And
=D =3, = 1 93, ., a[l——.J
—=E—(E)=—¢e—(E*)=—| —ED
Eat E‘at(EE) 2£at( ) ot| 2
So from equation (7) .
- ol == =71 —~.
i =——|—=(HB+ED)|-EJ
div (Ex H) at[Z( + )J‘

] == ——

Or (EJ) = —%[E(H.B ES E.D)J— div(ExH) ....(8)

Integrating equation (8) over a volume V enclosed by a
surface S

j EJdV = j 3{1(&13' g E.B)Hdv . j div(Ex H)dV
f viot (2 /

Or

[Edav = —jBuHZ;%eEZ}JV—j(Exﬁ).ds
v \'% S

As - —_ =
B=pH, D=¢E

And [div(Ex H)dV = [ (ExH).ds
X v S

Or

[Ehv=2 [ L 3oy - J(Exi)as
Or

(B xH)ds =— J@I;tﬂdV— [Ed)av

S A Y

[Pds=—| ag&dv - I(Ej)dv (as P=ExH)..(9)
S t v - _

\%

i.e., Total power leaving the volume = rate of decrease of

stored e.m. energy — Ohmic power dissipated due to
charge motion

volume js equal to the rate of decrease of stored

electron}agnetic €nergy in that volume minus the
conduction losses,

In equation ()] J"l;.ds represents the amount - of
S

electromagnetic energy crossing the closed surface per
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second or the rate of flow of outward energy through the
surface S enclosing volume V i.e., it is Poynting vector.

The term |%"—d\’ or %j[%p}{: +%5E::ld\’ the

v Ay

> I - .
term —pH-and —egE- represent the energy stored in
2" 2

electric and magnetic fields respectively and their sum
denotes the total energy stored in electromagnetic field. So
total terms gives the rate of decrease of energy stored

This is also known as work-energy theorem. This is also
called as the energy conservation law in electromagnetism.
In volume V due to

electric and magnetic

fields. HEJ )dV gives the rate of energy transferred into
s
the electromagnetic field.

Complex Poynting vector = P=ExH

Whereas the direction of poynting vector is

P=agxa,

The time-average power can be obtained from the complex
Poynting vector using Pav=1/2Re{ExH }.

Significance of the Poynting vector in a Static
Electromagnetic Field ;

In an electromagnetic field the flow of energy is given by
the Poynting vector. For an electromagnetic wave, this
vector is in the direction of propagation and accounts for
radiation pressure. However, in a static electromagnetic
field the Poynting vector can of course be non-zero.

Ques 5) Determine the power flow in a coaxial cable:

Ans: Power Flow in a Co-Axial Cable
Consider a co-axial cable which has a DC voltage ‘V’

between the conductors and a steady current I flowing in
the inner and outer conductors.

The radius of inner and outer conductor are ‘a’ and ‘b’
respectively,

_ b
—1 a
\IQ \ Resistance

Figure 5.2
By Ampere’s law,
[H-dL=

JdL = Circumference of circular path between a and
b=2nr

mcctmm“g“ﬂi“ (TP Solved Senes) KTy

H-Qrn =1
H =_.l——a <r< b
2nr

o uctor
E due to an infinitely long cond

A e (D)
2ner

E=

Where. X is the charge density.

The potentiai difference between the conductors 1s

vo M In(h) ..... 2)
2ne \a

E in terms of V from equation (1) and (2)1s
\l

In(E]r
a

Power density P=E X H

E=

Since E and H are always perpendicular to each other

P=E-H
Voo
P= -

[b) onr
In| —|r
a

The total power will be given by the integration of power

density P over any cross-section surface.

Let the elemental surface already be 2nrdr

Total power W = [L

W=VI

Le., the power flow along the cable is the product of V and I.

Ques 6) Discuss  the average, instantaneous and
complex poynting vector.,
Ans: Instantaneous Poynting Vector

In ele.ctromagne[ic field theory, the relations between the
Poynting vector and the field strength are very much

B Eaae 2 TaaaaS—
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similar o those relations

. \ 3 atons between power ; )
current it AC. circuiry F T volings and
In general, the Poy

A = a

P =EXH

uting vector is given by,

«(h
Equation (1) represents the inat
unit ared. Henee it is also ¢
veclor.

antaneous power flow per
alled instantaneous Poynting

The complex Poynting Vector is oi
plex Poynting Vector is given by,

«(2)

an RART TS = n
from equation (2) it is clear that the product of E and H
s a  vecto S
is ector product.  The mutually perpendicular

— —
'cr(;r‘npone'nts ﬂot E ar}d H, contribute to the power flow.
is power flaw 1s directed along the normal to the plane

— —
containing E and H. Thus the complex flow of power
per unit area normal to the x-y plane is given by,

1=y ‘ |
Pz ::(E\H.‘ —E_\,H‘) ..... 3

"Using the complex Poynting vector, the average and
reactive parts of the power flow per unit area can be
obtained.

Average Poynting Vector
The average part of the power flow per unit area is given
by,

Pa\g =%RC[EXH ] .(4)

Similarly the reactive part of the power flow per unit area
is given by, ,

Presct = —i—Im[Ex H )

-

Complex Poynting Vector ' _
In term of the complex Poynting vector, the total

instantaneous Poynting vector can be written as,

- EN - -
Pina = P= Pa\g'*‘ Preact

*

sy l - = l - -
P=—7—Re[E><H ]+51m[ExH ] n(6)

Ques 7) For a wave travelling in air, the electric field is
given by E = 6 cos (0t = Bz) a.at frequency 10MHz.

Calculate:
1) B,
2) H,and

3) Average Poynting vector.

B-57

Ans:
1) For air as a medium, the velocity of propagation is
v=c=3x10"m/s
Then the wavelength is given by,
8
c 3x10

F10x10°

=30m

Hence phase constant 3 is given by.

2 2xm
=2 =27 =0.2094rad/m
p A 30

2)  For air, the intrinsic impedance is given by,
N ="n,=120m=377Q

— —

The electric field E and the magnetic field H are in

- - '
phase quadrature. As E is in x-direction, H must be
in y-direction so that the wave travels in z-direction.

s H= = ij—cos((ﬁl—ﬁz)-a)- A/m
n, 377

(%]
S~

The average Poynting vector is given by,
1 - —5'
5 Re[ExH ]

=
pu\'g =

Let us represent E in phasor form as,
-
—_
E=6 Cil(o(-ﬁz) dx
Similarly H in phasor form can be represented as,
- 6 . ) -
(-
H==— P 5 N
377

The complex conjugate of H can be written as,

}—_i - _@_e—j((ol-[}z); ‘
377 ’

Hence average Poynting vector is given by.

_P?m“ = l [661((01-13:) ;\]X _E__e-j((ot-[}z) ;v
) ' 377 ;

136\~
=—| — |(axXay
7(377)( y)

=

=0.0477 a2, watt/m’

Ques 8) In a Non-magnetic Medium
E = 4 sin (210 x 10’t - 0.8x)a, V/m. Find

l) er R T\- d
2) The time-average power carried by the wave.

3) The total power crossing 100cm’” of plan 2x +y =5,
Ans:

1) Since o= 0 and B # w/c, the medium is not free space
but a lossless medium.

Scanned by CamScanner



BN

Y

B=08 @=2xx10\n= M (honmagnetic),

£=608
X — 0
Henve, B=@yUs = VI EE, = — ¢,

r,[

or (& _Be_ u.s(sxu}‘) _12
Q 2ax10° K
g = 1450
n= ;Ll— JZ;HL = Pg —-l"O:t\—-lO't:
\ € \ Safo g 2
=W7Q

) P=ExH-= E\‘ Sin:((l){ —B.\)ﬂ\
n

B = : l Pdt= &1“—16—‘3‘
T~ 21 2x10x”

=81 a, mW/m*

3} Onplace2x+y=3
Vg
2a,+a,

Hence the total power is
P,..= | P..-dS=P . -Sa,

. ['-a +a,
[

=(S1x10~° a )-(100x10

_162x107

’f—
N

=72450W

v

Ques 9) A plane wave is travelling in a medium for
which ¢ =0, g, = 2 and & = 4. If the average Poynting
vector is SW/m". Find:

1) Phase velocity,

2) Intrinsic impedance,

3) R.DMLS. value of E, and

4) R.MS. value of H.

Ans: For the given medium 6 = 0. assuming medium to be
a lossless medium,
1) The phase velocity of the wave is given by
I 1
NN RTINS

Substituting the values of . [, & and €.
1

JEXTX107 x2)(8.854x10™ x 4)
=1.0599x10°m/s

v=

2) The intrinsic impedance at the medium is given by,

- !E: IPo.ur - /E - ’&J-=377Q
Tl \ £ \ 808, nl)\ Er . nl) EO

l:l:ctrmmg"“i” (TP Solved Series) KTu

2

n= (377)&

1) = 266.58Q2

3) The magnitude of the average KON Ve s

given by,
4
E,

Y
21

—p
P.\\_g =

_1 Eq

2266.58

EZ = 2665.8
En=51.6313 V/m

N

Thus the r.m.s. value of the electric field is given by,

g 2B SO 365y
r.ms. \/:2_ ﬁ

4) The r.m.s. value of the magnetic field is given by,

H o =Beme _ 355 _13691mam

s n 266.58

ELECTROMAGNETIC WAVES

Ques 10) Determine the electromagnetic wave equation
from maxwell’s equation.

Ans: Electromagnetic Wave Equation from Maxwell’s
Equation

Maxwell was the first to note that Ampere's law does not
\‘ltlbt) conservation of charge (his corrected form is given
in Maxwell’s equation). This can be shown using the
equation of conservation of electric charge,

ap

V.i+=X
ot

=0

Now consider Faraday’s Law in differential form,

V><E+—EEE

ot

Taking the curl on both sides of above equation,

VX(VXE) = Vx( aB)
ot

The right-hand side may be simplified by noting that,

JB )
Vx| —|=-2<
x( at) ot (VxB)

Recalling Ampere’s Law,

9°E

d
_.__(VXB) = —uogo o >

ot
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1-hcmfofl‘
Vx(VXE) =16, O &
at*

The left hand side may be simplified by the following
vector identity,

vx(VXE)=-V*E

Hence,
2 0°E
V'E:}loeo—ét—: .(l)

Applying the same analysis to Ampere’s Law then
substituting in Faraday’s Law leads to the result

) 0°E
VB =U,§, > .2

Thus the equation (1) and (2) are the electromagnetic wave
equation.

Ques 11) What is uniform plane wave? Explain. Also
mention the properties.
Or
Mention the properties of uniform plane wave.

Ans: Uniform plane wave

Uniform plane wave is a kind of TEM wave which come
across very often in wave propagation. The wave at the
receiving antenna, separated by a large distance from the
transmitting antenna is considered a uniform plane wave.

It is a wave whose equiphase surfaces are planes. A plane
wave has no electric or magnetic-field components along
its direction of propagation.

A wave in which the electric and magnetic field intensities
are directed in fixed directions in space and are constant in
magnitude and phase on planes perpendicular to the
direction of propagation. It is characterized by electric and
magnetic fields that have uniform properties at all points
across an infinite plane.

For. a field to be constant in amplitude and phase on
infinite planes, the source must also be infinite in extent.
In this sense a plane wave cannot be generated in practice.
However in many practical situations, like signal form the
far away T.V. transmitter or signal of a satellite at its earth
Station wave can be approximated to a plane wave.

Properties of Uniform Plane Wave

Un!form plane wave exhibits certain important properties

Which are as follows:

1) In UPWs, there cannot be any component of electric
or magnetic field along the direction of propagation of
the wave. It implies that both the electric vector and
1h_€ magnetic vector must be entirely normal to the
direction of propagation. "

¥”7' T —

4)

5)

6)

7

8)

- direction of the wave

form a right-hand ve

B-59

i i yave
fields in uniform plane wa

ction in time domain for non-

he functions of (7 — Yol)-
eld in UPW in non-

g7 direction in

The expressions for
travelling along 7 dire
jctive medium are |

condt .
of electric 0

i € ent
The x componer : o
conductive medium, travelling a
time domain appear as: -

E.= fi(z - Vi) + fo(z + vt)

in uniform plane wave in
electric vector of a wave
# and for a

The expressions for fields
phasor form are for lhe' lectr
travelling in z~ direction, 1t Is E(z) = E£ 2
wave travelling in z~ direction, itis E(z.) =Ege . for ;mn-
conductive medium. In case of conductive mcdgm, ora
wave travelling in z" direction, it is E(z) = E# : and for
a wave travelling in z~ direction. it is E(z) = E€™".

In case of wave travelling in arbitrary direction, it
requires the use of direction cosines Fo write
expressions for fields in uniform plane wave in phasor
domain as:

E(r)=Ee " =Ee

—iB(xcos A+ycosB+zcosC)

e (2)

If the medium has conductivity, then
E([‘) — Eoe—)ﬁ r_ Eoe—y(‘cosA+3‘c0<B+zcosC) ..(3)

Here, A, B and C are the angles, the ray or wave
normal makes with x, y and z axes, respectively. The
cosines of the angles, i.e., Cos A, Cos B and Cos C
are called direction cosines of the wave.

The ratio of the electric vector-E to the magnetic
vector H for UPW in free space is given by

E_[n

E— E e (@)

If the medium happens to be with non-zero

E:onductivity, then it can be shown that its intrinsic
impedance is:

..(5)

The electric and magnetic fields remain in time phase,

1.e., reach their maximum values, minimum values or
mean values at the same time, ie.,
any point of UPW,

§imultane0usly at
The re}auve orientation of electric vector E and
magnetic vector H is normal to each other, and the
propagation is same as the
E x H. The electric vector E,

and the direction of propagation
Cctor system.

direction of the vector
magnetic vector H

;\mUP\V Is associated with the power flow. The
ount of power flow per unit area is:

p=E W/m?
2n o . ) .ee(6)
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9) A UPW is also associated with the energy storage and

the average energy density in the wave is:
_eE? pH?

J/m? (7)

ave

Ques 12) A uniform plane wave at frequency of
300MHz travels in vacuum along + y direction. The
electric field of the wave at some instant is given as
E = 3% +5%. Find the phase constant of the wave and
also the vector magnetic field.

Ans: The phase constant

3 6
B=wue = —WTOIO(;:I—O = 2nrad/m
3%

The wave is travelling along +y direction. Therefore, the H
vector should lie in xz— plane. Let the vector magnelic
field be given by H= AX + BZ. Since for a uniform plane
wave [ and H are perpendicular to each other,

E-H=0

= 3A+5B=0 s

o
Since, —=1=1201 Q

[H
[H|=\/A—1+T=|£=——_”9+25
= n

120 A/m (2)
=15.46x10"

Solving equation (1) and (2),

5
A=+% — and B=F——
120 J120m

The vector magnetic field is

5% -3z
” Z—L_‘f A/m

J120n

Ques 13) Discuss the reflection of plane
clectromagnetic waves at boundaries for normal
incidence.

Or
Explain the reflection of plane wave for the normal
incidence. Discuss about reflection and transmission
coefficient for E and H.

Or
Explain the terms transmission coefficient and
reflection coefficient.

Or
Define reflection coefficient of a plane wave in a
normal incidence.

Ans: Reflection of a Plane EM Waves in a Normal
Incidence

When a plane wave from one medium meets a different
medium, it is partly reflected and partly transmitted. The

proportion of the

Elcctromagnﬂics (TP Solved Series) KTU
incident wave that is reflected or
transmitted depends on the constitutive parameters (g, p,
o) of the two media involved.

propagating along the +z-

Suppose that a planc Wave ' :
direction is incident normally on the boundary z = (

between medium 1 (z <0) characterised by O, Ell'] H aer
: s show

medium 2(z > 0) characterised by'O'z, & Ha, 25 S

" subscripts i, I, and t denote

figure 5.3. In the figure, ted waves, respectively.

incident, reflected, and transmit

X
A

‘Medium 1 (o, € 11
IEl
H; e A Medium 2 (o2 €2, L2)
(Incident wave) E,

AE,

Hl Ak

P—é ' i Wave
ay H, (Transmitted Wa )

(Reflected wave) y

—>Z

z#0

5.3: A Plane Wave Incident Normally on an Interface

Figure )
between Two Different Media

The incident. reflected, and transmitted waves shown in
figure 5.3 are obtained as follows:

Incident Wave
(E. H,) is traveling along +a, in medium 1. If we suppress
the time factor ¢’ and assume that

2 (7)) = " 114

E, (z)=E,e "a, (D)

Then

=y E .
Hi(z)=Hje ™ a, =—2e™a n(2)
oo
Reflected Wave
(E,, H)) is traveling along — a, in medium 1. If

E.(z)=E, e"a, )

Then,
H, (2)= H,,e" (-a,) = — C10 g1 »
: , y , ceon(d)

Where E has been assumed to be along a,; we will
Y ;e > . *
consistently assume that for normal incident E,, E,, and E
have the same polarization. n l
Transmitted Wave
(E., H) is travel :
v H)is traveling  along +a,
Eh(Z) = hmc_ {Zl'ax

in medium 2. If,

Then.H,(z)=H ¢ "%, — Ew 4,
‘ 0€ ‘“:“e By 15, itog (6)

In equations (1) to (6), E i

. s Bio, E, 2
the magnitudes of the incliod e
electric fields at z = (),

0 dre, respectively,
ent, reflected, and transmitted
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o from figure 8.3 that thye ¢,
N" ises both the inciden
o am 2 has only the tr

tal fielq

¢ “ ol
and "'nk‘tlcd ‘ mulmm 1

ansmitted fig| » Wherege
L teld, § a3
,“ g = Eit Eo Hi=H 4y,

3 E2=E“ H2=“|

¢ interface 2 =0, the boupg,

taﬂ!_-em“‘l components of g and Y i
""uous Since the waveg are trangye
. cnllfely tangential (o the jngey face,

HC“CC az= 0, El““ - Ell an x\ﬂd
= Hawn imply that

jan
g0+ EOM=E0= g+ Ey=E,

Ay conditiong equire (hyy
fields must be

D

erse, Eand y fields

A7)
_ 1
H(O + H(0) =H(0) = F(Ei() —E)= h wen(8)
! P .
From equations (7) and (8), we obtaip
“hmh g
0 N, +7, ° ~0)
2n,
And, Eo —m o, Ey . (10)

we now define the reflection cocfficient T and the
iransmission coefficient T from equations (9) and (10) as

Reflection coefficient, T" = E =N—ny (11 a)
E. e
10 2 1
Or, Eo=TEp (11b)
: . . E 2n,
Transmission coefficient, T=—0 = i . (12 a)
Ey, m+m,

: Ol', Eu) = TEiU ...... (12 b)
Note:
) 1+T =7

2) BothT and T are dimensionlf_:ss and may be complex.
0<im<1

Ques 14) A uniform plane wave travels in +x directior.:.
The phasor electric field for the wave Is

(3 + j52) V/m. Find the equation of the ellipse of

polarisation. Find the maximum magnitude of the field.
Also find the sense of rotation. '

Ans: The wave travels in +x direction and therefore th? E-
vector should lie in the yz plane. The (wo field

Components in y and z directions respectively can be
Written as

Ey =3 cos wt
. T
E, =5cos (u)t + ;)
Note; a phase "difference of

j in z component . indicates

T
+7belwecn E, and E,.

‘Y AN ; BN SERSERER—— N

B- 61
. .
The equation of the ellipse 15 ;
. o B el ®
2 2x By XE, cos o] B (m
2 A 4 —L =sin ——J
9 15 5 2
E: E?
= —l--}- 7 =
9 25

The ellipse of polarisation is shown in figure 3.12.

The maximum field magnitude = 5V/m.

To find the sense of rotation, let us find the resultant field
direction at say t = 0 and t = At (Positive).
Att =0, E

s
y =3 and E, =5cos;=0. So, the field

vector is vertically upwards.

Att=At, E,=3 cos oAt = +ve

and E, =500$(0)At+g)=—

The resultant vector, therefore, moves leftward. This wave
is travelling in +x-direction (Inside the paper) and hence
the sense of rotation is Left Handed

i E,
X 3
q
:_5 5 > E X
z -3

Figure 3.12: (a) Coordinate Axes (b) Ellipse of
Polarisation

Ques 15) A uniform plane wave travelling along
positive z direction in air strikes normally on the
surface of a dielectric with B = p, and € = 6.25¢;. The
amplitude of electric field of the incident wave is 10
V/m. Calculate the amplitudes of electric field
intensities  associated with the reflected and
transmitted waves, assuming that the dielectric extends

to infinity. Also, calculate the power per unit area
carried by each wave,

Ans: Amplitude of electric field in the incident wave,
E,=10.0 V/m

Intrinsic impedance of air, 1, =1, = 377Q
Intrinsic impedance of the dielectric,

377 —=150.8Q
- 25

a0

N, =
6.25¢,
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Reflection coefficient,
r=N:-n _150.8-377
n.+n, 150.8+377

=-0.4286

Transmission coefficient=1 + " = 1 — 0.4286
=0.5714

Amplitude of electric field in the reflected wave,
E =|TE},, =4.286 V/m

Amplitude of electric field in the transmitted wave
Eso =1+ T} =5.714 Vim

Powers per unit area carried by the waves are,

Incident wave:
pr _(Eng)’ __10°

e = =0.1326 W/m*
2n,  2x377

_(Epg)® _ 4.286°
2n, 2x377

Reflected wave: P

l.av

Transmitted wave:
pr = (B _ 57147

Dy = = =0.1082 W/m*
‘ 25 2x150.8

Ques 16) A uniform plane electromagnetic wave is
incident normally at the interface of two non-
magnetic, perfect dielectric regions 1 and 2. The
incident wave is in Region I and the amplitude of its
clectric field intensity is 24V/m. The intrinsic
impedance of Region 2 is 188Q and the transmission
coefficient for the magnetic field is 0.75. Find average

power per unit area in the incident, reflected, and’

transmitted waves.

Ans: Intrinsic impedance of Region 2 is 1, = 188Q
Amplitude of electric field of the incident wave,

.

E/, =24V/m

Transmission coefficient for the magnetic field,

¥ 4 )
S . | W&
n,+n, n,+I88

By solving. n; =112.8Q

Reflection coefficient for the electric field,

r=—M _ 188-112.8 _

= = 25
N: +0;

1S8+1128

Average power per unit area in the incident wave,
) ]
T - q -

v Ey _ 24

i = = =2.553W/m’
o (128)

=0.0244 W/m*

Elcctromngnclics (TP Solved Series) KTy

Average power per unit ared in the reflected wave, 2
p- =T?pt =(0.257(2.553)=0.16 W/m
= l,av

l,av
: i i ansmitted wave,
Average power per umlt area in t:;hc\,\t/r/ )
+ — m
P;:av = Flav —Pl,.-w - 239
Ques 17) Discuss and derive the wave equations in

phasor form.

Ans: Wave Equations in Phasor F.orm |
An electromagnetic wage in a medium can be completely

defined if intrinsic impedance (1) and - propagation

constant (y) of a medium is known. Thus it 1s necessary to

derive the expressions for 1 and v in term_s. of the
properties of a medium such as permeability  (p),

permittivity (€), conductivity (0), etc.

. ?
Consider Maxwell's equation derived from Faraday’s law,

. 9B dH
= 95 __,0% (D)
VXE ot - o
Taking curl on both the sides of the equation,
o oH
VXVXE=—| Vx—
o L ot
— a —
VxVXE=- a—(VxH) een(2)
t

Using vector identity to the left of equation (2),

V(V-E)- V’E = —p[%(Vx ﬁ)} en(3)

But according to another Maxwell’s equation,

VxH=7+9D
ot

Putting value of Vx H in equation (3),

- - - g
V(V-E)-V?E =—y| 2| 7, 9D

— J+=——
” at ee(d)
Since most of the regions are source or charge free
V-E=0
V(V-E)=0

Putting value of V(V-E)

in equation (4 assumi
charge-free medium, (4), assuming

= 9|= 8—)
v/ E=—p| 2 " D
a| " ot
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5)
Making both sides POsitive,
, 2 ol= n
VE=p| <| 749D
ot a |l (5)

onsider @ general electromagneric <. i
c : e agnetic wave with both the
fields, Eand Hvarying wiy, re

ey Spect to time,
field varies with respect 1o time, -

B et to its partial derivuliv\gl:aig
:gtll:nioﬁr;S) in phasoci‘ fcoarl:n.bc S b jo RCWriting
V?E= njed + ij)]
V’E=jwu[(aﬁ)+jm(e§)]
V'E= [joou E+ (Jo)ep El
VE=(ono+joens ©)

In similar way, one can write another phasor equation as,

2% = =
V'H=[jop(c + joe)]H ()
The terms inside the bracket in e
exactly similar and represent the

in which wave is propa

quations (6) and (7) are
properties of the medium
gating. The total bracket is the
square of a propagation constant ¥, hence re- equations (6)
and (7) can be rewritten as,

V:E=yEand
V'H=vy*H

So the propagation constant y can be expressed in terms of
properties of the medium as,

Y=a+jB = /jop(o + joe) soni(8)

B-63

The real and imaginary parts of ¥ are attenuation constant

(o) and phase constant () and both can be expressed in
terms of the properties of the medium,

T, 2
: o
a=ow [PE I\/u(——] iy (9)
2 (03

2
and, f=w “78 l+[—9—) +1 o (10)

WEe

Ques 18) Calculate the attenuation constant and
phase constant for a uniform plane wave with

frequency of 10GHz in polythelene for which KR = Hao,
& =2.3 and ¢ = 256 X 10™* U/m.

Ans: The propagation constant in loss dielectric is given

Yy
Y=o+ jB=4/jou(c+ joe)
Y= J2rf ), o+ 27 ) (e e,)]

= j2xmx10x10° x4xmx107)[2.56x10™
+j2xmx10x10°(8.854%10™? x2.3)] .

¥=J(78.9568x10°)[2.56x10~ + jl 2795]

¥=/178.9568x10° £90°](1.2795./89.98°]

¥=4101.025x10° £179.98°

Y=317.84 £ 89.99° = 0.0554 +j317.84

Thus, &= 0.0554 Np/m
B =317.84 rad/m
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Electromagnetics (TP Solved Series) KT1;

| ﬁw odule 6 |

Wave Propagation and Transmission Lines

—_—

WAVE PROPAGATION

Ques 1) Discuss  the wave propagation in loss
dielectrics. Also determine the E and H for the loss
dielectrics.

Or
Explain the wave propagation of plane electromagnetic
wave in lossy diclectric (Conducting media).

Ans: Wave Propagation of Plane Electromagnetic
Wave in. Lossy Diclectric

Wave propagation in lossy dielectrics is a general case
from which wave propagation in other types of media can
be derived as special cases. A lossy dielectric is a medium
in which an EM wave loses power as it propagates due to
poor conduction.

In other words a lossy dielectric is a partially conducling
medium (imperfect dielectric or imperfect conductor) with
o # 0, as distinct from a lossless dielectric (perfect or good
dielectric) in whiche =0

Wave propagation in general medium i.e., lossy dielectric
medium (o, €, 1)

Since, ‘
VxH,=0oE+joeE, ... (N
VxE,=-jopuH, (2)

Taking curl of equation (2)

V x (V x E,) =—jou(V x H,)

Put the value of V x H, from equation(1)
V (V.E,) - V'E, = —jop (oE, + joeE,)
0 — V°E, = —jop (oF, + joeE,)

= V>E, = jop (oF, + jweE,)

Or V2E, = jou (0 + joeE,)

Or V E, - jou (o + jo) eE, =0

V'E.-YE=0 .. (3)

Where, y is propagation constant and given by.
Y=o+ jB=4jon(c+jog) .. 4)

And. o = Attenuation constant, B = Phase constant

Assumptions _ o
1) Electric wave has amplitude in only x-direction.

2) Wave is moving in z-direction.

Since, E=E,a, + E,a,+E, a,

From assumptions,
2 2 2
a Ex', + a Ex.' + a Exq —YZE,“ =0
ox?  ay’ 0z

., 2

2 )
- dd7E2"~ _YZEM =0
= (D’ = V)E,, =0

On solving
E, = Eﬂcj"" + Ege”

Where, Eqe™™ = Wave travelling in the +ve direction.
Eqe” = Wave returning i.c., in —ve direction.

Since, wave is moving towards infinity so,
Exs = E(fl ckﬂax ..... (6)

Since V x E, = — jouH,

a, a, a,
0 d 0 .

— — — |=-jouH
ox dy 0z JORE,
E, 0 0

J
a|—E, -0|+0=—j
'y(az ) jouH,

: J
JOUH, =—5(—Exsuy

A
jouH, = G Bl
JopH "”a_Exue a,
z
= JouH, =9E, e™"a,
H, = Y E ¢
T jop Y
f(cH— JOE . |
H)’s = \J—)Ex e "a |
jou 0 y i
H,_ = E"Oc_.ﬂay
ys (7
n (7 |
Since, direction of propagation is givenby, a, xa, =ag f
inc-! ax xay =a7. --.-.(8)
i
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e know equati ‘tric fi
Aswek quation of electric field in Phasor do

- B - main,
Ex\ —Exnc TL{\X

=EF e+
—ExoL “*’.lB)zux

Or, E-‘s - Exoe_mc—jlha\

This equation can be written in time domain as
Ty

E,(z.) =E, e™cos(wt - Bz)a, V/m ....(9)

Where, Pz = Phase angle in (rad)
And B :M rad

4 m

prawing the amplitude of equation (9 .
following figure 6.1: . (9) w.rt. (z) gives the

E.A

Ex,

Figure 6.1

-0z

E, e -
= H,(z,1) =—3n—cos(0)t —PBz-6)ay A/m .....(10)

Ques 2) Explain the wave propagation of plane
electromagnetic wave in lossless dielectric.

Ans: Plane Waves in Lossless Medium
In a lossless medium, € and p are real numbers, so k is
real. :

Let us consider E, component,
E,  9°E, 0B
G E," +2~—E.,—‘+——,L+k2Ex =0 .....1)
ox>  dy°  0z°

Let us consider a plane wave which has only E,
aating along z. Since the plane wave

component and propa :
ane perpendicular to z,

will have no variation along the pl
dE JE, —(0. The Helmholtz’s

le., xy plane, —=—=
e ox. dy
equation (1) reduces to,
0:E )
’x +l\'_E‘ = O ..... (2)
dz- '
The solution to this equation can be written as,
E, (z)=E!(2) +E (2) .
=E;e—jlz +Eael"z ...(3)
constants (can be

EI and Ejare the amplitude

determined from boundary CO“ditlons)}

B-65

In the time domain, €,(z, t) = Re(E, (z)e"™)
e, (7,0) = Ej cos(ax —kz) + E, cos(ot+kz) ...(4)

¢ ~+ 5 - )
assuming Eg and E are real constants.

Here, €!(z,1)=Eg cos(ut—pz)represents the forward

travelling wave. The plot of g1 (z,t) for several values of t
is shown in the figure 6.2,

E()*»\—c» —D

t

0]

T
[0) t=0

Figure 6.2: Plane Wave
Traveling in the +z Direction

It can be seen from the figure 6.2, at successive times, the
wave travels in the +z direction.

Let us fix our attention on a particular point or phase on
the wave (as shown by the dot), i.e., ot — kz = constant.

Then as t is increased to t + At, z also should increase to
z + Az so that,
o(t + At) —k(z + Az) = constant = Wt — Bz

or, WAt=kAz
Az ®

or, —=—
Az k

When At = 0,

. Az ;
Let us write lim — = phase velocity vp.
At—-0 At

V=1 (5)

VP =
If the medium in which the wave is propagating is free
space, i.e., €= €g, L = Ho

Then Vig=

() 1
- =C
‘D\/PTJEO \ﬁlogo

where, ‘C’ is the speed of light. That is plane EM wave
travels in free space with the speed of light.

The wavelength A is defined as the distance between two
successive maxima (or minima or any other reference
points), i.e.,

(mt—kz)— [t —k(z +A)] =21
or, kA=2n ‘
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2n
or, A=—
k
Substituting k =(—° i
\Y
P
_ 2nvp _ i
2nf f
or, AMf=v, ()

Thus wavelength A also represents the distance covered in
one oscillation of  the wave,-  Similarly,

€ (z,t)=E, cos(wt +kz) represents a  plane wave
travelling in the -z direction.

The associated magnetic field can be found as follows:
From equation (3),

o+ —ta-ilza
E{(z)=Ej e™"4,

ﬁ=—_—VXE
Jou
a, éy a,
jou . oz
Eje” 0 0
=-—5—Ege"lz’1
o
E, . —ifza
—Ye*a, =Hje "4, A7)
n
Where n=%— on _ K is the intrinsic impedance

Kk ofie Ve

of the medium.

When the wave travels in free space

No = ’“—“E 120m =377 is the intrinsic impedance of
£()

the free space.

In the time domain,
.

H'(z,1) ='ﬁ)%cos(u)t—ﬁz) n(8)

Which represents the magnetic field of the wave travelling
in the +z direction.

For the negative traveling wave,
+

I:I'(z.t)=—a‘ &cos(wHBz) ..... 9)
M

[:]cctrnmi'S"c'ics (TP Solved Series) KTy

For the plane waves described, both the E and H fields are

perpendicular to the direction of propagation, g thc'sc
waves are called TEM (Transverse Electromagnetic)
« D It «

waves.

the wave prnpugati(m of plane

Ques 3) Explain N in conducting medium.

electromagnetic w

Ans: Electromagnetic Wave in Conducting Mcd|;:m .

Let us consider a planc electromagnetic wave [rfw;, Ing in
a linear dielectric medium such as air along thch‘ 'regF'O"
and being incident at a conducting interface. T’ e e
will take to be a linear medium, sO that one can describe

the electrodynamics using only the E and H vectors.

the propagation of the wave in the
s the medium is linear and the
in the infinite medium, the

To investigate
conducting medium
propagation takes place ;
vcctorsE,ﬁ and k are still mutually perpepdlcglar. Let
us take the electric field along the x direction, _the
magnetic field along the y- direction and the propagation
to take place in the z dircction. Further, take thF
conductivity to be finite and the conductor to obey Ohm’s

law, j = (SE.

Consider the pair of curl equations of Maxwell equation,

VxH=J+e —aE=cI§ +ea—E
ot ot

Let us take E, Hand k to be respectively in x, y and z
direction. Thus the n have,

- JE oH
VXE), =——2*=—n—2
WA= 8
. OE, OH
1.e., ¥+“Tty=0 (D)
and (VxH), =— i, =oE, +¢ i
dz = ot
H oE
. y X
ie., n +0E +€ o =0 veen(2)

-Let us i ariati i j
tus take the time variation to be harmonic (~e'™) so that

}Il-]}? time derivati\{e is equivalent to a multiplication by jo.
e pair of Equations (1) and (2) can then be written as,

a_E"_+' H
aZ J“(D y=0

oH

—L+0E_ +j .
aZ i3 X+JmEEx‘0
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Let us_igl‘of? ;:‘l;s Pair of coupled equations by taking a
derivativ 1er of the eguations with respect to z and
substituting the other into it, l

azE . oH azE
- 4 ey X : .
az2 JUL® aZ = azz '—JH(O(G-i—_]u)e)Ex =(

Define, 2 complex constant ¥ through
Y =JHO(C + jwe)
in terms of which,

9°E, s '
=2 VE«=0 (3
Inan id.entical fashion,
°H,
-7 YH=0 @)

Solutions of equation (3) and (4) are well known and are
expressed in terms of hyperbolic functions,

E,= A cos h (z) + B sin h(yz)

H, = C cos h (yz) + D sin h(yz)

Where, A, B, C and D are constants to be determined.

If the values of the electric field at z = 0 is E, and that of
the magnetic field at z = 0 is Hy, since, A = Eg and C = H,.

In order to determine the constants B and D, let us return
back to the original first order equations (1) and (2),

oE
*+ juoH, =0

Y +oE, +jocE, =0
oz

Substituting the solutions for E and H
¥Eq sin h(yz) + By cos h(yz) + iop(H, cos h(yz) + D

sinh(yz)) =0

This equation must remain valid for all values of z, which
is possible if the coefficients of sin h and cos h terms are
separately equated to zero,

Egy + jouD =0

By + jouHa =0

The former gives,

I)='—_’Y EO
jou

jou

E,
n

B-67
Where,
jou
n=.——
o+ jwe
Likewisc,
=-nHo

Substituting these, our solutions for the E and H become,
E, = E cos h(yz) -nHo sin h(yz)

E, .
H, = Hy cos h(yz) - —n—" sin h(y2)

The wave is propagating in the z direction. Let us evaluate

the fields when the wave has reached z = 0,
Ex =L, cos h(yg) - T]H() sin h('YQ;)

E
H, = Hy cos 'h(yﬂ) - _Hn- sin h(y@)

If 0 is large, the one can approximate
¥l

Sih h (y2) = cos h(y@)= —2—

Thus we have,
e”
E, = (E, 'T\HO)T

Y
H. = (H, -2
y n 2

The ratio of the magnitudes of the electric field to
magnetic field is defined as the “characteristic impedance”
of the wave

jop
o+ jwe

:n:

Ques 4) Write the intrinsic impedance and propagation
constant in all medium.

Or
Write the equations for following medium:
1) Plane Waves in Lossless Dielectrics
2) Plane Waves in Free Space/ Perfect Dielectric
3) Plane Waves in Good Conductors

Or
Find the value of a and B for good conductors. Show
that angle of charactristics impedence is always 45° for
good conductors.

Ans: Plane Waves in Lossless Dielectrics
In a lossless dielectric, ¢ << we. It is a special case
6 =0,e=g¢€, W=Holle e (1

Hence,

0=0, B=wype e (22)

e~ e — : . :
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u=

%l”‘
m
-

L
p

Also 1= \/gzm e3)

And thus E and H are in time phase with each other and
given by,

E = E, cos (wt - Bz) a, and

H=Hcos (0t - [Sz)ay

Plane Waves in Free Space/ Perfect Dielectric
In this case,
c=0,e=¢€,.l=Ho . 4)

This may also be regarded as a special case. Thus we
simply replace € by € and [t by |1, in equation (2 a and b)
we obtain, ’

0]
0=0, B=0JlE=— .. (5a)

| ,
u= =c, A=—/— .. (5b)
H,E, B .

Where, ¢ = 3 x 10°m/s, the speed of light in a vacuum. The
fact that EM wave travels in free space at the speed of
light is significant. It shows that light is the manifestation
of an EM wave. In other words, light is characteristically

electromagnetic.

[ we o (6)

/4
1+ ]
(L)E'

By substituting the constitutive parameters in equation (4)
into equation (6), ¢ = 0 6, =0 and n = N0, where 1, 8
called the intrinsic 1mpedance of free space and is given

by

Since, INl=

no= M =120m=377Q .. %
€
E=Eycos (t—-Pz)a, e (8a)

Then.

E
H=H,cos (ot —Pz)a, = —%cos (ot —Pz)a, ....(8b)

0
Plane Waves in Good Conductors
A perfect, or good conductor. is one in which 6 >> ®€ so

that 6/e — =: i.e.
g =oo, £=¢g, H=UM e

a=Pp= \mucf Jafue (10 a)

Hence,

ctromugnctics (TP Solved Series) KTy

Ele
[|=—03= g(—n-, -"-'ZE ..... (10 b)
p_ Yo P
Also, m= ’%1450 ..... (11)
10
And thus E leads H by 45°- If
E = E,e " cos (0t —Bz) a, e (12 a)
Then,
= E, e "cos (ot — Pz — 45%a,.... (12b)
ou
(0]

Ques 5) Find the expression for fl,ﬂ and v for loss less

or perfect dielectric medium.

Ans: Propagalibn constant, Phase Constant and
Attenuation Constant for loss less or perfect dielectric

medium
The propagation constant is given by,

v=.4/jopu(c+ joeg)m” -l ()

For the perfect dielectric, substituting ¢ = 0, € = &€ and p
= polt, in above expression we get,

y=1/jou(0+ joe)

.'.}'=ijm\./.lEm"l U ())

Also  y=a+jp

--(2)

Hence the attenuation constant for the perfect dielectric is
given by,
a=0 (D)

The phase constant for the perfect dielectric is given by,

B:m\/ﬁrad/m .....(5)

The intrinsic impedance is given by,

— /ﬂ.:\/’g= ’p’()ur = }i &_
G+j0)€ € \ Ef}gr EU £r

Putting 6 = 0 for perfect dielectric, we get

n= Moty H,

e e Y

o n=n R =377 (M

. n nﬂ\/-: 377\/;9 -.-..{6)

el
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Ques 6) A uniform plane
: wave .
vave propagating in a poog Ques 7) A uniform plane wave propagating in a

conductor if the magpoeg: 5
H = 0.1 ¢ cos (Z;tn:g;:)t“hc field intensity is given by, medium has
conductivity and COrrc(s;n]“s(:-) i A/m. Determine (he I = 2¢™ sin (10% - Pz) a, V/m.
field. Also calculate g component of g :
. ¢ avers; o ot
of unit area and thickness ‘C.rfngc power loss in a block If the medium is characterised by €, = 1, p, = 20, and .
Ans: Compari ] | o = 3 mhos/m, find o, 3, and I1.
: anng the given equati .
atro, ,
i n with the general Ans: To determine the loss tangent to be able to tell

5
equation for, H, get the following terms: whether the medium is a lossy diclectric or a good

a=15B=15w=25x 10%ad/s conductor.

o=p= 3

2 B=mufc e 2339355
PN S (15)° ‘ P& 10t x1x
Al x0T g = 0-57s/m =
5= 11 _ showing that the medium may be regarded as a good
= C—x = E =0.067m conductor at the frequency of operation. Hence,
172

. =i [nwo _[ 4nx1077%20(10%)(3)
Now for E ) 2 2
Assume € =g, =614

_ jou - I o =61.4 Np/m, B =61.4rad/m
C+jue Also,

wo  [4nx107x2000%) "
“ =5 =
c 3

Inl= £ ; tan 26 =2
5V T e _ [800n
41+ ) 3

we
c
tan20, =—=3393 -0, =45°=7/4
tan 26, = . L) =1.025 " we n
27x10° x8.85x107"
1 Hence,
6, =—tan~'(1.025) = 22.85° o
2 H=H_e™ sin(mt —Pz —Z)a"
| 4nx107
- -2 Where,
Inl= 8.85x107" _ 377 _ 350 E:e_qx’] e a e
1+1.025°> 120 MER AR
, and
Hence. E(z,t)=nH-a; HO=&=2 i =69.1x107*
. = A AN A Thus
dpxdy =4, dpxad, =(-a,); ag =(-a,) .
" H=-69.1e™%'* sin(lOgt—61.422—Z)ax mA/m

E(z.1) = 315x0.1xe ™ cos(2nx10°t =152 +6;)(=d,)V/m
Ques 8) In a lossless medium for which 1 = 60m, p, = 1,

B - : St— 2.8594
E(z,t)=-31.5e 152 cos(2mx10°t =152 +22.85 )aV/m and H = - 0.1 cos (ot — z) a, + 0.5 sin (ot - z) a, A/m,

calculate £, wand E.

! ol 5e70% 05 22.85° ,
Pive =T,‘[EXH ]—EXO'IX:“' Ans: In this case, 6 =0, 0.=0,and B =1, s0

= 145 ™07 W/m’ n=ie = Mo [H 1207
. . 80 E:r \/‘;

Atz=0, P, .(0) = 1.45; Atz =8 )
P, (8) = 1.45 ¢ = 1.45 x 0.135 =0.195

5 : 120 120m 4
Power loss = P,.(0) — P.(8) = (145 - 0.195)x1m or e = - = —25¢ =
= [.255W 0 eom
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Electromagnetics (TP Solved Series) KTU

B=ohe =afe, e, =2 /520 Hence
¢ ¢

. H . H
E =~JVxlldl =2 gin(t ~2)a, - E;") cos{mt ~z)a,
or, o=Bo_lOx10h . ¢ e
Al - =1.0 X 3 4 .
2 2 Py =94.25 sin(mt - z7)a, + 18.85 cos(ot — z)a, V/m
There are two ways 1o find the value of E and H Ques 9) A lossy dielectric has an intrinsic impedance of

200 £30° Q at a particular frequency. If, a that
frequency, the plane wave propagating through the
dielectric has the magnetic field component

H= 10e"“cos(mt - % x)a, A/m

Method 1: H=H, + H,

Where,
Hy=-0.1 cos (ot - 2)ayand H, =
corresponding clectric field

E=E +E,

0.5 sin (wt-z)a, and the

Find E and o. Determine the skin depth and wave
Where, polarisation.

E; = Ey cos (ot - 2) 4, and E,=E Ans: The given wave travels along a, so that a; = a,; ay =

2, SIin (ot — z) ag .

a
" 1 ' A
Although H has components along &, and a, it has no S0 g = Xag=a Xay=a,
component along the direction of propagation; it is Or ag=-a
therefore a TEM wave. AlsoH, =10 50z
o= )

For E],
ap, =—(ay xay, )=-(a,x-a,)= a,
E,, =nH,, =60r(0.1) =61

E

H—" =1=200£30° = 200e’"® — E, = 2000e’™'®
0

_Except for the amplitude and phase difference, E and H

‘ Hence always have the same form. Hence
E, = 67 cos (ot - 7) a, E = Re (2000e/"%e™"e/ag)
“ ForE,, _ or E=-2e™ cos(mt - %-i— %)az kV/m
ag, =—(ay xay )=—(a,xa )=a,
E, =nH,, =60m(0.5) =30n Knowing that B = 1/2, we need to determine o since
| Hence, » A= HE; 1.{&]- -1
E, = 307 sin (Wt — z)a, . 2 we
Adding E, and E, gives E; that is,
E =94.25sin (1.5 x 10% - z)a, + 18.85 cos (1.5 x 10°t—z)a, V/m e s T
and B=w | —|.[1+|—| +1
! Method 2: Apply Maxwell’s equations directly, 2 e
] JoE 1
| VxH=E+ea—=>E=—J'Vdet ) -
| t € , >
{ (o]
| I+ —| -1
! 0 o_ [me}
Because o = 0. But : B >
1+ [i} +1
. ai ai ai M,  oH, LV Lee] ]
: = z|=— a, +—=a
VxH 4 y : 5 2t

{ HX(Z) H (Z) : o
i | y But —m—g =tan 26, = tan 60° = /3 . Hence,

B

; ‘ =H,, cos(ot-2z)a, +H,, Sin((Dt‘-- z)a, G |:2_lj||/2 B

l2+1] TR
B where, H,, =-0.landH,, =0.5.

£ ' . i
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Q:B 1

—_—

\/T = 2\‘/? =0.2887 Np/m

1
i 8= o 2V3= 3.464m

or

The wave has an E

. . z COmpo . - X
the z-direction. Ponent; hence it is polarised

along

Ques 10) What do yoy

m OV ski
phase velocity and aror can vy skin depth? Also define

1p velocity.
Ans: Skin Depth
As E (or H) wave travels ;

) _ S In a conducting med; i
amplltuc:? is attenu_aled by the factor e is“:calleedc;unn;(.:dlit y
attenuation. The distance 9, shown in figure 6.3, lhroug:

which the wave amplitug
Plitude decreases by a factor ! (about

37%) is called skin !
sediiimihe. epth or penetration depth of the

o 8x=a ..... (1)

0.368E}f - - -\ ------_l7x 2, )
o S

Figure 6.3: Illustration of Skin Depth

The skin depth is a measure of the depth to which an EM
wave can penetrate the medium.

Equation (1) is generally valid for any material medium.
For good conductors,

‘ @)

- = SRR

Also for good conductors,
-z/38 Z
E=E,e " "cos cot—g a,

ponential damping of the

Showing that § measures the ex : :
ducting medium.

wave as it travels through the con

Phase Velocity

The phase velocity of a wav
the wave propagates in space.
phase of any one frequency com

In terms of the cyclical frequency an

« is the rate at which the phase of

This is the speed at which the
ponent of the wave travels.

d wavelength, we

have, v, = Af
©_jf =
At Vp ZB—— - \/;1_8_

B-71

Group Velocity

The velocity with which the overall shape of wave
amplitude, known as the modulation or envelope of the
wave, propagates through a medium is known as the
group velocity of the wave. Group velocity is the velocity
with which the energy propagates; hence, it is also known
as energy velocity.

_Aw _do

Ques 11) What do you mean by surface resistance?

Ans: Surface Resistance
The surface or skin resistance R, (in /m?) as the real part
of the 1 for a good conductor. It is given by,
R = 1 |=fu

=—= |
Gd c
This is the resistance of a unit width and unit length of
the conductor. It is equivalent to the DC resistance for a
unit length of the conductor having cross-sectional area
1 X 8. Thus for a given width w and length 0, the AC
resistance is calculated using the familiar DC resistance
and assuming a uniform current flow in the conductor
of thickness®d, that is,
r RJU
. O0wW  w

ac

Where, S = dw. For a conductor wire of radius a,
w = 27a,
14
o, Rac _ 02mad _ 3
| / _ 28
oma~

Since & << a, at high frequencies, this shows that R,. is far
greater than Ry. In general, the ratio of the ac to the dc
resistance starts at 1.0 for dc and very low frequencies and
increases as the frequency increases. Also, although the
bulk of the current is non-uniformly distributed over a
thickness of 58 of the conductor, the power loss is the
same as though it were uniformly distributed over a
thickness of & and zero elsewhere. This is one more reason
why & is referred to as the skin depth.

TRANSMISSION LINES

Ques 12) Write the transmission line equations. Also
derive the expression of characteristics impedance.

Or
Write the voltage and
transmission line.

current equations for
Or )

What do you mean by transmission line? Derive the

characteristics impedance of transmission lines.

Ans: Transmission Lines : _ _
A transmission line is a means of transfer of information

from one point to another. Usually it consists of two

Scanned by CamScanner



B-72

conductors. It is used to connect
source may be
receiver.

a source to a load. The
4 transmitter ‘and the load may be a

The line parameters resistance (R),

conductance (G). and capacitor (C) are
lumped but distributed as shown in
mean that the parameters
the entire length of the line

series R and L,

|
| . ey

shunt G and C V

inductance (L),
not discrete or
figure 6.4. By this we
are uniformly distributed along

-
et

el 2 0 W PG .|

w
W
H

: ..;...a.-_\‘_....i.:‘_-;‘,-;‘.-;'.......-‘-,._....,..q
Figure 6.4: Distributed Parameters of a Two-Conductor
Transmission Line

In the model of figure 6.5, we assume that the wave
propagates along the +z-directi
the load. :

on, from the generator to

By applying Kirchhoff's voltage law to the outer loop of
the circuit in figure 6.5, we obtain

V(z. [)=RAzI(z,t)+LAZaI(aLt’”+V(z+Az, t)

or
-_— 't
V(z+Az, t)-V(z, t) =R I(z. t)+LaﬁZJ ..... (1)
Ar ot
I(zyRAz LAz (74471

To generator +
«—

V(z + Az, p) 10 lod

V(z, 1) GAz CAz
— 9
z ‘ z+ Az >z

Figure 6.5: L-Type Equivalent Circuit Model of a Differential
Length Az of a Two-Conductor Transmission Line

Taking the limit of equation (1) as Az — 0 leads to

aV(z, 1) L d(z, t)
—T— RI(z, t)+ —_a[

..... )
Similarly, applyving Kirchoff's current law to the main
node of the circuit in figure 6.5 gives

I(z,t)=1(z + Az. ) + Al

dV(z+Az, 1)
=I(z+Az, ) +GAzV(z+ Az, t)+CAz—(~

ot
_ I(z+Az, t)=1I(z. t)
Az
=G V(z+Az. t)+CaVL;—AL—t) ..... 3)

As Az — 0, equation (3) becomes

Electromagnetics (TP Solved Series) KTy

_al(z, t) -GV l)+c‘—)—v(az—‘tl ..... 4)
dz !

If we assume harmonic 'time dependence so that S -
V(z, 1) = Re[V(2)e"”] o (5 a)
I(z, t) = Re[L(z)e!""] ..(5b)

where V(z) and 1.(z) are the phasor forms of V(z, t) and
I(z, t), respectively, equation (2) and (4) become

_dvs =(R +J(DL)[s ..... (6)
dz

—_— dIS =(G+jmc)vs ..... (7)
dz

In the differential equation (6) and (7), Vs and I are
coupled. To separate them, we take the_second derivative
of V. in equation (6) and employ equation (7) so that we
obtain

-

g V =(R + joL)(G + joC)V,
dz®

d*v,
dz?

or

-YvV,=0 . @)
Where,
Y=0+jB=/(R+joL)(G+ joC) |....(9)

By taking the second derivative of I in equation (7) and
employing equation (6), we get

d’IL,
dz’

_‘\{ZIS :0 ..(10)

We notice that equation (8) and (10) are, respectively, the
wave equations for voltage and current similar in form to
the wave equations obtained for plane waves in equation
(15) and (17). Thus, in our usual notations, vy in equation
(9) is the propagation constant (in per meter), o is the
attenuation constant (in nepers per meter or decibels? per
meter), and P is the phase constant
The wavelength A and wave veloc
given by

(in radians per meter).
ity u are, respectively,

2
A=

The solutions of the linear
equations (8) and (10) namely,

V+ 4 . '.’l
Vi@=Tof Vet (13)
= +Z -z .

homogeneous differential

and I(z)= o *le

= +Z -7
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V.V 1t - ;
Where 'V, , \n Ao, and [, are wave amplitudes; the 4+

and — signs, respectively
and —z-directions, s s
we obtain the instant

. denote wave traveling along 47
also indicated by the arrows. Thus,
aneous expression for voltage as

V(z, ) =Re[V,(z)e!™)
+ -~z .

=V, cos(mt —Bz) + Voe® cos(ot +PBz) ....(15)

The characteristic impedance Z,

positively traveling voltage w
point on the line.

of the line is the ratio of
ave to current wave at any

Zo is analogous to 1, the intrinsic impedance of the
medium of wave propagation. By substituting equation
(13) and (14) into equation (6) and (7) and equating
coefficients of terms e* and e™”, we obtain }

——90o —_ "o

Vo __ Vo _RtjoL_

os - s T = . 16
I I Y G+ joC (16)
R +joL
or Z, = = =R_ +jX
G+ joC a Tl (LD

Ques 13) Explain the different types of waves in
transmission lines.

Ans: Waves in Transmission Lines

There are two types of waves in transmission lines. they

are as follows: :

1) Standing Waves: Whenever there is a mismatch of
impedance between transmission line and load,
reflections will occur. If the incident signal is a
continuous AC waveform, these reflections will mix
with more of the oncoming incident waveform to
produce stationary waveforms called standing waves.

A wave confined to a given space in a medium
and still produces a regular wave pattern that is
readily discernible amidst the motion of the
medium. For example, if an elastic rope is held
end-to-end and vibrated at just the right
frequency, a wave pattern would be produced that
assumes the shape of a sine wave and is seen to

change over time.

The wave pattern is only produced when one end of
the rope is vibrated at just the ngh_t frequency. When
the proper frequency is used, the mterferenc.:e of the
incident wave and the reflected wave occur in such a
manner that there are specific points along the
medium that appear to be standing still. BCCZ.IUSC the
observed wave pattern is characteriSE(_i by points that
appear to be standing still, the pattern is ofte_n called a
standing wave pattern. There are other points a!ong
the medjum whose displacement changes over time,
but in a regular manner. These points vibrate back a_nd
forth from a ‘positive displacement to a negative

displacement; the vibrations occur at regular time
intervals such that the motion of the medium is
regular and repeating. A pattern is readily observable.

Figure 6.6

The figure 6.6 above depicts a standing wave
pattern in a medium. A snapshot of the medium
over time is depicted using various colours, point A
on the medium moves from a maximum positive to
a maximum negative displacement over time. The
figure 6.6 only shows one-half cycle of the motion
of the standing wave pattern. The motion would
continue and persist, with point A returning to the
same maximum positive displacement and then
continuing its back-and-forth vibration between the
up to the down position. point B on the medium is a
point that never moves. Point B is a point of no
displacement. Such points are known as nodes. The
standing wave pattern that is shown above is just
one of many different patterns that could be
produced within the rope.

Travelling Waves: These waves are the current and
voltage waves which travel from the sending end of a
transmission line to the other end. When the switch is
closed at the transmission line’s starting end, voltage
will not appear instantaneously at the other end. This
is caused by the transient behaviour of inductor and
capacitors that are present in the transmission line.
The transmission lines may not have physical inductor
and capacitor elements but the effects of inductance
and capacitance exists in a line.

Therefore, when the switch is closed the voltage will
build up gradually over the line conductors. This
phenomenon is usually called as the voltage wave is
travelling from transmission line’s sending end to the
other end. And similarly the gradual charging of the
capacitances happens due to the associated current
wave.

Traveling Wave

Figure 6.7: Crest is Seen to Move
or Progress Across a Medium

A mechanical wave is a disturbance that is created by
a vibrating object and subsequently travels through a
medium from one location to another, transporting
energy as it moves. The mechanism by which a
mechanical wave propagates itself through a medium
involves particle interaction: one particle applies a
push or pull on its adjacent neighbour, causing a
displacement of that neighbour fro n the equilibrium
or rest position.
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Asa wave is observed travelling through a medium, a
crestas seen moving along from particle to particle.
Thix crest is tollowed by a wough that is in turn
followed by the next crest. In fact. one w ould observe a
distinet wave pattem (in the form of a sine wave)
travelling through the medium. This sine wave pattern
continues to move in uninterrupted fashion until it
encounters another wave along the medium or until it
encounters a boundary with another medijum. This type
of wave pattern that is seen travelling through a
medium is sometimes referred to as a travelling wave.

Ques 14) Determine the wave equation for loss less
transmission lines

Ans: Wave Equation for Transmission Lines
A perfect transmission line will carry an electrical signal
from one place to another in a fixed time, regardless of the
rate at which the voltage changes. If applied a signal V (t)
to one end of the transmission line, where t is time, the
signal at the other end will be V (t — 1), where 7 is a
constant. One can model a real transmission line with a
distributed inductance, capacitance, and resistance. To
calculate 1, and so determine the circumstances under
which 1 will be constant. The following figure 6.8 shows a
small element of a transmission line:
R&x

V(x) L&x .
(x O-—>—.I(x) A V(x+8x)

1(x+0x)
Cdx

IO.V.

|
X 8x '
Figure 6.8: Transmission Line Element. Here C.L. and R as the

capacitance, inductance, and resistance per unit length of line.
Voltage with distance and time is V(x,t), current is I(x,t)

Our element is a short length, 8x, of cable. Distance along
the cable is x. Although the capacitance, inductance, and
resistance of a transmission line are distributed and
mingled with one another, one can lump them into three
separate components 'in our infinitesimal element. As
8x—0, our lumped model becomes a distributed model.

. Consider the voltage across the inductor and resistor. At

position x and time t a current I(x, t) passes through both
of them in series:

The voltage across inductive element is given by,

V (x) =V (x+0x) = ?Lﬁx +I(x)Rox

N al '
——8x=—L0&x+IRS
ox g oRTIRex
v al
—=—-L——RI (1
ox ot ()

The rate of change of voltage with x at a particular time is
a function of the rate of change of current with time and
the current itself.

'

-

Plectromagnetics (TP Solved Series) KTy

The current into capacitive element is given by,

IV(x +0%) 1z
T(X) =1 (x+86x) = 1)_..(_{._»’ Cox
Jt
2

N MSK 2 V) g s V) gxcox

ox bl oxot

Lim al E)V (2)

! — =_C—
Sx =0 ax a‘

The rate of change of current with x at a pamc_'u]ar_ time is
proportional to the rate of change of voltage wn}:jtlmc. !zt
us differentiate equation (1) with respect tq x and equation
(2) with respect to t. Let us use the resulting equations to
eliminate terms in L.

The transmission line equations is given by,

vV _ o ol
ox2 oxdt  ox
PL__ 0V

oxot ot?

o’V 2°V oV
__=LC————RC—
ox? ot? ot

If arrived at a partial differential equation in V. Let us
assume R is zero, the second derivative in x being
proportional to the second derivative in t. These are the
conditions under which a sinusoidal wave will propagate
without distortion or attenuation. Consider a sinusoid of
frequency f = w/2m, as shown below.

The propagating sine wave is given by,
V(x,t)=a sin((ot —w+/ LCx)

V. a6?LCsin (@t ~ oy/LCx)

ox*? ‘
aa;\zl =aw’ sin((nt - m\/ﬁx)
2 2
= i Y =LCa~Y
ox” ot’

The; sinusoidal wave has the unique property that its
derivatives have the same shape as the original. There is
some scaling of the amplitude of the waveform as
dlfterer!tiation takes place, and it is this scaling that
constrains the solution to our transmission line equation.

If t = V(LC) x, the movement of
of the sinusoid (the value of sin
Therefore dx/dt = IN(LC). The
is I/N(LC). Provided tha .
the velocity of all sine wave

the positive Zero-crossing
¢ when its angle is zero).
velocity of the sine wave
and C remain constant with ,
s will be the same.

Let 'V (0, t) denote (he voltage

If represent our input V(0, t) as
Fourier transform

at position zero and time t.
asum of sinusoids using a
soids will propagate along

» all these siny
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-ansmissi i
the ‘r"“‘"i‘ ‘"’:j‘.“nc at the same speed, so that their sum
wnll‘rcn}a n ll‘ll .Is!f)ncxl as it propagates, and it will have
our ideal transmission line: V(x, 1) = V(0, t - 1) with 1t = x

V(LO).

5 2y _ . .
Qucsl' .) l).crn.e the expression of input impedance.
Also write its value for lossless line.
t | or
Discuss the voltage and curre istributi
! A g nt distribution o i
terminated with load. ' e
) Or
Derive the cxpr_essmn of reflection coefficient and
Power for transmission line.
Or
Discuss the reﬂ_cctmn coefficient for short, open and
matched transmission line.

Ans: Input Impedance

Consider a transmission line of length 0, characterised by y
and Z,, connected to a load Z; as shown in figure 6.9.
Looking into the line, the generator sees the line with the
load as input impedance Z;,.

It is our intention in this section to determine the input
impedance, the standing wave ratio (SWR), and the power

flow on the line.

Let the transmission line extend from z = 0 ‘at the
generator to z = ( at the load. First of all, we need the

voltage and current waves, that is

V.(z)=Vje " +V, er . (1)
A \A

I(z)=—2e"——2e" .. 2

s(2) Z, Z 2

To find V, and V, , the terminal conditions must be
given. For example, if we are given the conditions at the

input, say
Vo=V(z=0),L,=1z=0 . 3)
0=0-
Z,1, <— B o Z,
Y IL
. + +
VE v"[_, Zm (Y’ ZC') r Zm Z|_ VL
[
- z=10
z=0 (a)
Z. 1
+
Ve Vol | Zin
* (b)

Figure 6.9: (a) Input Impedance Due to a Line Termi.nated by
a Load; (b) Equivalent Circuit for Finding V, and L, in Terms
of Z;, at the Input

substituting these into equation (1) and (2) results in_

A =%(V" +Z,1,) e (4a)

v.: =E(V” +Zu'u) """ (4b)

If the input impedance at the input terminals is Zi,. t.hc
input voltage V, and the input current I, are easily

obtained from figure 6.9 (b) as:
\"%
Z — & .. (5)

V=—1T—V,I =
° 7, +Z, £ Z,+Z,
On the other hand, if we are given the conditions at the
load, say_
Vo=V(@z=0),I,=(z=0) ... (6)

Substituting these into equation (1) and (2) gives,

Vo = —%(VL +Z0pe"

A :%(vL ~Z1)e™ .

Next, we determine the input impedance
Z.n = V(2)/1(z) at any point on the line. At the generator,

e.g., equation (1) and (2) yield
. V,(z) _ Z,(Vy+V])
" 1(2) \AEAYS
Substituting equation 7(a),(b) into (8) and utilising the fact
that

¥ -y v -yt
© =cosh ¢, e_26__ =sinhy¢, .....(9)
. ﬂ 'Yl _ -y
or tanh y/ = sinh yf =< - © = e (9b)
coshyl e +e™
We get ‘

o | Z +Z, tanhyl

Z, =1, Lossy) ..... 10
l:ZO+ZLtanhW} (Less) LD

Although equation (10) has been derived for the input
impedance Z;, at the generation end, it is a general
expression for finding Z;, at any point on the linc. To find
Z,, at a distance 0’ from the load as in figure 6.9 (a), we
replace € by 0. A formula for calculating the hyperbolic
tangent of a complex number, required in equation (10).

For a lossless line, y = jB, tanh jB0 = j tan B, and
» = R, so equation (10) becomes,

Z = Z, +jZ,tanP(
" Z,+jZ, tanB¢

showing that the input impedance varies periodically with
distance € from the load. The quantity B¢ in equation (11)
is usually referred to as the electrical length of the line and
can be expressed in degrees or radians. -

(Lossless).....(11)
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Reflection Coefficient

7 ’ Al 3 2] ~ . el . '
We now define I, as the voltage reflection cocefficient (at

the _I(\:\}l). L is the ratio of the voltage reflection wave to
the incident wave at the load, that is,

I =—2— (12)
[+

Substituting V' and VJ in cquation 7(a) and (b) into

equation (12) and incorporating V| = Z, 1, gives,

— ZL — Zo
——ZL =

L

The voltage reflection coefficient at any point on the line
is the ratio of the magnitude of the reflected voltage wave
to that of the incident wave.

That is,
“a¥z -
r(Z): VOL — VO e?‘yl‘
o
Vie ™ V7

But z =  — 0’. Substituting and combining with equation
(13), we get

e »
I'(2) =V—“+e'we " =T e™ (19

(3]

Ques 16) What is the input impedance of 55Q lossless
transmission line having length 0.23, if the load is a
short circuit?

Ans: It is given that £ = 0.2A
Z,=55Q and

Z; =0 (for a short-circuit line)
Z; (for a lossless line) is given as
[ZL +iZ, tanﬁf}
o

7, =7 _
Z,+jL, tanf/

Electric length

2r
(=] ==|x0.2A
: (x]

=04rn
Thus,
Z,=jZ,tan B0 or
= jx55xtan 0.4 or
=jx55x0.0219 or
Z;=j1.20Q

Ques 17) A 55Q lossless transmission line has a length
of 0.3\. If it is terminated in an open circuit, find the
input impedance.

Ans: It is given that
0=03A and
Z,=55Q

Iilcclmmugnclics (TP Solved Series) KTy

Electric length,

([N‘):%x()xn or=067

Input impedance Z;, is given as,

7. +jZ, tanp/’
7. =Z(,{——‘*-*—J~—"’

- 7, +jZ tan B/

but Z;, = o (for a short-circuit line).

1
Z. = Z or
in U[jtanﬁlj]

= —jZ, cot B0 or
= —jx55xcot(0.6m) or
=-1671.19 jQ

Thus,

Zin
Ziu
Zy

Ques 18) A transmission line has a characteristic
impedance of 40Q. It is terminated at a .reactan-ce (')f
j25Q. Find the input impedance of a section, which is
50m long at a frequency of 150MHz.

Ans: It is given that Z, = 40Q and Zp = j25Q. Also,
frequency (f) = 150MHz and
¢ =50cm

= —m

Wavelength

( 5

Thus,
0=N4

It is a quarter-wave transmission line. Z;, in a quarter-
wave transmission line is obtained as

7z %
Z
2
o 2,=
J25
or Zin =—-064jQ

Ques 19) A transmission line has a characteristic
impedance of 60Q. It is terminated at a resistance of

J40Q. Find the input impedance of a section, which is
25cm long at a frequency of 300MHz.

Ans: Given that Z, = 60Q and Z; = j40Q. Also, frequency
(f) = 200MHz.

_(x]_ 3%10° |
= =20
f) 300x10°
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€= To0™=0.25m

Since ( =—

hus it 1S Q4 QUArterwawe iy :
' ter-wave 1u ““—r.\\d\L transnussion line and 7, in a
Quarter-Wave transmission line is obtained as

_ZJ
n = ? or
L
60)?
Z,= -\( -
n j40 9OJQ
Zin = _90_|Q

Ques. 20) What do you mean by VSWR? Compute the
relation between reflection coefficient and VSWR,

Ans: Voltage Standing-Wave Ratio (VSWR)

A useful and frequently used concept related to the
reflection coefficient is the voltage standing-wave ratio, or
VSWR. The VSWR is the ratio of the maximal to minimal
voltage along the line.

Relation between Reflection Coefficient and Voltage
Standing Wave Ratio (VSWR)

VSWR is defined as VSWR = &‘— = (:—t{;D

Proof
Voas =[Vi[+ |V, |2V 0+]T])

Similarly,

vmin =|Vil— Vr =‘V|l(l_|r,)
VSWR =S= v1+]r)
PV
1+|r]
VSWR =——
-]

S ranges between 1 and o or 1<S<m

We can also write |r| as

S=1

|

S+1

Ques 21) A certain R.F. transmission line is terminated
eristic impedance of

in pure resistive load. The characte .
the line is 1200Q and the reflection coefficient was

observed to be 0.2. Calculate the terminating load,
which is less than characteristic impedance.

Z

0 —

. 200 0 efecti
Ans: for resistive load, S=R and reflection
R

R
s given as,

coefficient in terms of VSWRI

B-77

[‘:i_“_'=n.2
s+ 1

{ 1200 l]
R
M=+——£=0.2
1200
+1
Ry
Simplifying for Rg, we get:
Ry = 800Q

Ques 22) Calculate standing wave ratio and reflection
coefficient on a line having Z, = 300Q and terminated
in Zg =300 + j400.

Ans: The reflection coefficient is given by,
Zy —Z, (300+ ;400)—(300) _ 7400

4]

T Zp+Z,  (300+j400)+(300) 600+ 400
400.£90°

T 721.11233.69°
=0.5547.256.31°

Ques 23) What is an impedance matching using stub
line? Also describe the single stub matching using
analytical method.

Ans: Impedance Matching Using Stub Lines

For maximum power transfer, we know that the source
and load impedances should match. However, in the casc
of long transmission lines, these impedances must be equal
to the characteristic impedance Z, of the line. In many
situations, the source (such as a transmitter) and the 16ad
(such as an antenna) connected by the long transmission
line never match in impedance values, In such situations,
maximum power does not get transferred from the
transmitter to the antenna.

Since stub lines can transform and match impedances. So,
to match impedances in long transmission lines, stub lines
of suitable lengths can be employed. There are two
methods of stub-line matching using analytical method
and smith chart.

Single-Stub Impedance Matching using Analytical
Method

The stub line acts as a reactance and resonates with the
load. This idea is elaborated further as given below:

As voltage standing-wave ratio S is given by
VA R, X,
S=—=_—%4j¢ cons (1)
Ry Ry "Ry

Where Z, (= R, +jX,) is the input impedance, and
R, = characteristic resistance of the line.

Therefore from equation (1),

Input resistance Rs = SR, (real part) ... (2) and
Input reactance Xs = SRy (imaginary part).... 3)
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Now, at maximum volt
Xs = 0. Also, the inpu
1s given by

1 1 1 (1-T 1-T
s = o= |=Go[ =5 .
Ry SR, R(,(Hr‘) ”[HI‘) @

In equation(4), we have used the relations

age, the imaginary part
t conductance G, is minimum, and

GSrnin =

S=&l_l+l‘

-1 1-T e (5)
G, =L

0 R, ... (6)

One of the means of achieving impedance transformation
1S 10 use a stub line of suitable length , as shown in figure

6.10, at a distance x from the load-end such that the line is
brought to resonance.

In a similar manner, we find that at a volt
also Xs = 0, which gives
as:

age minimum
the expression for conductance

Voltage

minimum
before
insertion of < - >

stub : 7“1\—

o
<— >

Transmission line

N\ Stub linc of length 0

X
Figure 6.10: Single-Stub Impedance Matching
G. -8 _1(ur o
Smax _Rs R() I-T A

In between the maximum and minimum values of
conductance, we - get the expression for the input
admittance as

\IS:__GUijB_ ....(8)

Where, B is susceptance of the line. We insert our stub
line in between the maximum and the minimum values of
conductance so that it will act as an anti-susceptance ter.m
to cancel the B term in equation (8) at resonance. That is,
at resonance

Y, =G, % jB=G, )

Where the first #jB term is due to the transmission line,
and the second (cancelling) ¥jB term is due to the stub

line.

T, ; R, Y -’:u

%
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Ques 24) Discuss the electromagnetic interferences and
also give its classifications.

Or
Discuss the electromagnetic interferences and alsq
write the sources of EMI

Ans: Electromagnetic Interference o
Electromagnetic interference is the dcgraduu_on in the
performance of a device due to the fields making up the
electromagnetic environment.

Interference occurs if the received energy causes the
receptor to function in unwanted manner. Whether the
receiver is functioning in wanted or unwanted manner,
depends on the coupling path as well as thc source and
victim. The medium is to be made as inefficient ag
possible.

The basic elements of EMI are shown in figure 6.11
below

Source/ Coupling Receiver/
Emitter/ > Path/ > Rec'ep'tor/
Culprit Medium Victim

Figure 6.11: Basic Elements of EMI Situation

Classification of EMI ‘
The classification of EMI is shown in figure 6.12 below.
Based on
Operation
|
| 1
Radiated Conducted
Interference Interference
T
[ 1
Narrow Broad
Band Band

Figure 6.12: Classification of EMI
There are two types of interferences, they are as follows:

1) Radiated Interferences: The radiated interference is
of two types they are a follows:

T

oisy component

|__Noisy component

Radiatedfyissio

Radiated Susceptibility

Figure: Radiated Interference

i) Narrow Band: Narrow band

. interference usually
anses from

: intentional transmissions such as
radio and T.V, stations, pager transmitters, cell

phones, etc. It is a high frequency operation.

For example, proximity effect
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ii) Broad Band: :
) comes fn:md" Brnud band interference usually
These inelllnimCldcnlul radio frequency emitters
eloctric m‘(:lﬁ\ electric power transmission lines
ors ete. It is . .

Opcmlion‘ is a low ﬁcqucncy

For example, skin effect

5y Conducted

2) i erference Iiljicrfcrcllcc: Conducted electromagnetic
conductors § caused by the physical contact of the
caused l))" il:lj opposed to radiated EMI, which is
o uction (without physic:
conductors). physical contact of the

Elefitronmgn'ctic disturbances in the EM field of a
Cl:m uctor will no lopger be confined to the surface of
the conductor and will radiate away from it.

This persists in all_conductors and mutual inductance
between two radiated electromagnetic fields will

result in EMI.
- /Noisy component
Conducted
Emission
oisy component

[T

Conducted Susceptibility .

Figure 6.13: Conducted Interference

Sources of EMI
The sources of EMI can be broadly classified into two
groups:

ple, lightning.

tural Sources of EMI: For exam
Sources of EMIL: For
1d telephone communications.

1) Na
2) Manmade example,

commercial radio a1

In specific we can classify as:
1) Functional: EMI can originate from any source
designed to generate electromagnetic energy and

which may create interference as a normal part of its

operation.
2) Incidental:

sourccs. These sources
clromugncue CI

EMI can originate from manmade
are not designed specifically to
generate cle ergy but which do infact
cause interference.
3) Natural: EMI can be ca _
such as electrical storms rain

interstellar radiation.

used by natural phenomena,
particles, solar and

tromagnetic compatibility and

Ques 25) Discuss the elec o
also explain the need for EMC standards.
Or

mpati
d state the adv

agnetic coT bility. Also write the
antages of

Explain electromn
dards an

types of EMC stan
EMC standards.
etic Compatibility

(EMC) is the branch of

Ans: Electromagn
the unintentional

Electromagnetic Compatibility ‘
electrical science which studies
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ption of clectromagnetic

the unwanted  cffects
or EMI) that such energy

generation, propagation and rece
cnergy  with reference 1O
(Blectromagnetic interference,

may induce.
¢ the correct operation, in the same

different equipment
and the avoidance

The goal of EMC i
clectromagnetic  environment, of
which uses electromagnetic phenomena,
of any interference effects.

A system is said to be clectromagnetically compatible if:
1) It does not cause interference with other system.

2) Itis not susceptible to emissions from other systems.
3) It does not cause interference with itself.

EMI is a phenomenon while EMC is an equipment
nerate EMI above a

characteristic or a property not to g¢
certain limit and not to be affected or disturbed by EML.

atibility is achicved when a device
introducing intolerable
ment.

Electromagnetic comp
functions satisfactorily without
disturbances to the electromagnetic environ

The statement “Live .and let live” is the best way to

describe EMC.

Need for EMC Standards
The EMC standards are required for trouble-free co-

existence and to ensure satisfactory operation. They are
also required to provide compatibility between clectrical,
clectronic, computer, control and other systems. Standards
are required as manufacturer—user interaction and user’s
knowledge on EMI are limited. They are also required for
establishing harmonised standards to reduce international
trade barriers and to improve product reliability and life of

the product.

Types of EMC Standards

Thesc are-of two types:

1) Military Standards: Military EMC standards are
~made in order to ensure system-to-system
compatibility in the real time military environment.
Military standards are more stringent than civilian
standards. Most of the military standards are broadly
based on MIL-STD 461 and 462.

2) Civilian Standards: The civilian EMC standards are
applicable for equipment used for commercial,
industrial and domestic applications. The emission
standards are specified to  protect the broadcast

services from interference.

Advantages of EMC Standards

The advantages are as follows:

1) Compatibility, reliability
increased.

2) Design safety margin is provided.

3) The equipment —operates in
satisfactorily.

4) Product life and profits are increased.

and maintainability are

scenario

EMI
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Electromagnetics (TP Solved Series) KTy A

MODEL PAPER

ELECTROMAGNETICS

B. TECH. SIXTH SEMESTER EXAMINATION

o

—_—

Time: 3 Hours

Part-A ‘
Note: Attempt all question . Each question carrying 5 marks.
Ques 1) Transform Vector A = ya, (X + Z)ﬁy into spherical
coordinates system., Also evaluate a P (=2, 06, 3).
Ques 2) I.-'iml ‘llw clectrie field intensity due to infinite line
charged wire (line charged),
()!ws 3) The mean radius of a circular coil of 50 turns of fine
wire is 8.0 cm, It carries a current of 3.0 A, The coil is located on
the -z plane in air. Find the magnetic ficld intensity vector at
P20 ¢m.0,0),
Ques 4)Explain briefly the different types of polarisation in diclectrics.
Ques 5) A uniform plane wave at frequency of 300MHz travels
i vacuum along +y dircction. ‘The electric field of the wave at
some instant is piven as B = 3X +57. Find the phase constant
of the wave and also the vector magnetic ficld, )
Ques 6) A uniform plane wave travelling along positive 2
direction in air strikes normally on the surface of a dielectric with
M=ty and € = 6.25¢,. The amplitude of electric field of the
incident wave is 10 V/m. Caleulate the amplitudes of electric
field intensities associated with the reflected and transmitted
waves, assuming that the dielectric extends to infinity. Also,
calcalate the power per unit arca carried by each wave,
Ques 7) In a lossless medium for which 1 = 60, =1, and H=-
0.1 cos (ot - z) ag + 0.5 sin (0t - 7) ay A/m, caleulate €, @ and E.
Ques8) What do you mean by skin depth? Also define phase
velocity and group velocity. :
Part-B (Modules I and II)
Note: Answer Two full questions, Each question carrying 10 marks.
Ques 9 a) Determine the curl of the following vector fields:
2 A 2 P
1) F=x7ya,+y zay — 2Xza,
. 2 A -
2)  A=rTsinda,+reos q)uq, +ztanda,
ooosing . cosd .
3) V= 5 dp — Ty
P P
b) State and prove stokes' theorem.

Ques 10 a) Prove the electric field vector E = (grad v), where v is
a scalar potential ficld. '

b)Derive the expressions of capacitance for a coaxial cable.

Ques 11a) The lincar charge density of an infinite line charge
located along the axis of a cylinder of radius r is 8 nC/m. The
axis of the eylinder is the z axis of cylindrical coordinates. (l,:md
the clectrie flux crossing a part of the cylinder defined by 30" < ¢
< 60'and 0z < 3.6m.

b)Give the statement of Gauss law and define its value for
integral and point form. ~ ‘

¢) Give that K=30ckrilr —2za, in the cylindrical co-ordinates.
Evaluate both sides of the divergence theorem for the volume

enclosed by r=2,z=0and z=5.

Max. Marks: 10y

Part-C (Modules IIT and IV)
Note: Answer Two full questions. Each question carrying 10 marks,

Ques 12 a)State and explain Biot-savart’s lnw.' .
b)Derive the magnetic field intensity on the axis of a circular
loop carrying current 1. ‘ -

c)Solve the following:

. g 6 . S
1) A radial field, i = 2322097 coc63, A/m, exists in free space.

Find the magnetic flux ¢ crossing the surface defined by -

m/4<P<m/4,0< ,< Im. .
2)  Compute the total magnetic flux ¢ crossing the z = 0 plane

-2
in cylindrical coordinates for r<5x10

0.2 . .

mif, B=—"gin> (pa,(T).
r "

Ques 13 a) Determine the boundary conditions of magnetic field
from Maxwell's laws.
b) There are two homogenous, linear and isotropic, media with
interface at x = 0.x < 0 describes medium 1 (i, = 4). x >0
describes medium 2 (u,, = 10). Magnetic field medium 1 is
(30a, — 80a, +70a,) (A/m). Find the magnetic field in medium
2. Also, find the magnetic flux density in medium 1.

Ques 14 a) Derive the expression for energy stored in an electric field.
b)Derive the magnetic field intensity on the axis of a rectangular
loop carrying current 1.

Part-D (Modules V and VI)
Note: Answer Two full questions. Each question carrying 10 marks.

Ques 15a) Explain the reflection of plane wave for the normal
incidence. Discuss about reflection and transmission coefficient

for E and H. A :
b) State and derive Poynting Vector theorem and also express it

in complex form.

¢) For a wave travelling in air, the electric field is given by E =
6 cos (ot~ Bz) A, at frequency 10MHz. Calculate:

B, 2) H,and 3)  Average Poynting vector
Ques 16 a) Discuss the wave propagation in loss dielectrics. Also
determinc the E and H for the loss diclectrics.

b) A lossy dielectric has an intrinsic impedance of 200 £30° Q ata
particular frequency. If, a that frequency, the plane wave propagating
through the dielectric has the magnetic field component

H= lOc_“‘cos((ut - é x)ay A/m

Find E and . Determine the skin depth and wave polarisation.

Ques 17 .ﬂ)‘Wl}at do you mean by transmission line? Derive the
characteristics Impedance of transmission lines.

b) A.SSQ lpsslcss transmission line has a length of 0.3\, If it is
terminated in an open circuit, find the input impedance.

¢) Discuss and derive the wave equations in phasor form.
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